Skip to content

[WACV'2024] Learning to Recognize Occluded and Small Objects with Partial Inputs.

Notifications You must be signed in to change notification settings

dmehar13/msl-recognition

 
 

Repository files navigation

MSL

Concordia University

Hasib Zunair and A. Ben Hamza

[Paper] [Project] [Demo] [BibTeX]

This is official code for our WACV 2024 paper:
Learning to Recognize Occluded and Small Objects with Partial Inputs

MSL Design

We propose a learning algorithm to explicitly focus on context from neighbouring regions around objects and learn a distribution of association across classes. Ideally to handle situations in-the-wild where only part of some object class is visible, but where us humans might readily use context to infer the classes presence.

1. Specification of dependencies

This code requires Python 3.8.12 and CUDA 11.2. Create and activate the following conda envrionment.

conda update conda
conda env create -f environment.yml
conda activate msl

2a. Training code

Dataset details

The VOC2007, COCO2014 and Wider-Attribute datasets are expected to have the following structure:

|- datasets/
|-- VOCdevkit/
|---- VOC2007/
|------ JPEGImages/
|------ Annotations/
|------ ImageSets/
......
|-- COCO2014/
|---- annotations/
|---- images/
|------ train2014/
|------ val2014/
......
|-- WIDER/
|---- Annotations/
|------ wider_attribute_test.json
|------ wider_attribute_trainval.json
|---- Image/
|------ train/
|------ val/
|------ test/
...

Then directly run the following command to generate json file of these datasets.

python utils/prepare/prepare_voc.py  --data_path  datasets/VOCdevkit
python utils/prepare/prepare_coco.py --data_path  datasets/COCO2014
python utils/prepare/prepare_wider.py --data_path datasets/WIDER

which will automatically result in annotation json files in ./data/voc07, ./data/coco and ./data/wider

VOC2007 training

# MSL ResNet with CutMix
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name msl_rescm_voc --batch_size 6 --total_epoch 60 --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20 --cutmix data/resnet101_cutmix_pretrained.pth
# MSL ViT
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name msl_vitl_voc --model vit_L16_224 --img_size 224 --batch_size 6 --total_epoch 60 --num_heads 1 --lam 0.3 --dataset voc07 --num_cls 20

MS-COCO training

# MSL ResNet with CutMix
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name msl01_0.3,0.2,0.5_rescm_coco --batch_size 6 --total_epoch 60 --num_heads 6 --lam 0.4 --dataset coco --num_cls 80 --cutmix data/resnet101_cutmix_pretrained.pth
# MSL ViT
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name msl_vitl_coco --model vit_L16_224 --img_size 224 --batch_size 6 --total_epoch 40 --num_heads 8 --lam 1 --dataset coco --num_cls 80

WIDER-Attribute training

# MSL ViT-L
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name msl_vitl_wider --model vit_L16_224 --img_size 224 --batch_size 6 --total_epoch 40 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14
# MSL ViT-B
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name msl_vitb_wider --model vit_B16_224 --img_size 224 --batch_size 6 --total_epoch 40 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14

2b. Evaluation code

VOC2007 eval

# MSL ResNet with CutMix
CUDA_VISIBLE_DEVICES=0 python val.py --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20  --load_from checkpoint/msl_c_voc.pth

COCO2014 eval

# MSL ResNet with CutMix
CUDA_VISIBLE_DEVICES=0 python val.py --num_heads 6 --lam 0.4 --dataset coco --num_cls 80  --load_from checkpoint/msl_c_coco.pth

Wider-Attribute eval

CUDA_VISIBLE_DEVICES=0 python val.py --model vit_B16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14  --load_from checkpoint/msl_v_wider.pth

All experiments are conducted on a single NVIDIA 3080Ti GPU. For additional implementation details and results, please refer to the supplementary materials section in the paper.

3. Pre-trained models

We provide pretrained models on GitHub Releases for reproducibility.

Dataset Backbone mAP (%) Download
VOC2007 MSL-C 86.4 download
COCO2014 MSL-C 96.1 download
Wider-Attribute MSL-V 90.6 download

4. Demo

We provide prediction demos of our models. The demo images (picked from VCO2007) have already been put into ./utils/demo_images/, you can simply run demo.py by using our MSL models pretrained on VOC2007:

CUDA_VISIBLE_DEVICES=0 python demo.py --model resnet101 --dataset voc07 --load_from checkpoint/msl_c_voc.pth --img_dir utils/demo_images

which will output like this:

utils/demo_images/000001.jpg prediction: dog,person,
utils/demo_images/000004.jpg prediction: car,
utils/demo_images/000002.jpg prediction: train,
...

A web demo is available here.

5. Citation

 @inproceedings{zunair2024msl,
    title={Learning to Recognize Occluded and Small Objects with Partial Inputs},
    author={Zunair, Hasib and Hamza, A Ben},
    booktitle={Proc. IEEE Winter Conference on Applications of Computer Vision},
    year={2024}
  }

Project Notes

My notes for reference

[Oct 24, 2023] Accepted to WACV 2024! Wohooo. :D

[Sept 24, 2023] Semantic segmentation scripts added in this repo, built on https://github.com/hasibzunair/masksup-segmentation. Results were not added in paper due to time. Keeping it here for future reference!

Acknowledgements

This repository was build on top of CSRA and our previous work MaskSup which explores masked supervision in semantic segmentation. Please, consider acknowledging these projects.

About

[WACV'2024] Learning to Recognize Occluded and Small Objects with Partial Inputs.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 59.4%
  • Jupyter Notebook 40.2%
  • Other 0.4%