Scripts to train baselines and MSL models.
For Baseline ResNet with CutMix:
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name base_rescm_voc --batch_size 6 --total_epoch 60 --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20 --cutmix data/resnet101_cutmix_pretrained.pth
For MSL ResNet with CutMix:
CUDA_VISIBLE_DEVICES=0 python train_masksup.py --exp_name masksup_rescm_voc --batch_size 6 --total_epoch 60 --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20 --cutmix data/resnet101_cutmix_pretrained.pth
For Baseline ViT
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name vitl_voc_base --model vit_L16_224 --img_size 224 --batch_size 6 --total_epoch 60 --num_heads 1 --lam 0.3 --dataset voc07 --num_cls 20
For MSL ViT
CUDA_VISIBLE_DEVICES=0 python train_masksup.py --exp_name masksup_vitl_voc --model vit_L16_224 --img_size 224 --batch_size 6 --total_epoch 60 --num_heads 1 --lam 0.3 --dataset voc07 --num_cls 20
For Baseline TResNet
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name tresnetxl_voc --model tresnet_xl --batch_size 6 --total_epoch 60 --dataset voc07 --num_cls 20 --tres ./data/tresnet_xl_448.pth
For MSL TResNet
CUDA_VISIBLE_DEVICES=0 python train_masksup.py --exp_name masksup_tresnetm_voc --model tresnet_m --batch_size 6 --total_epoch 60 --dataset voc07 --num_cls 20 --tres ./data/tresnet_m_448.pth
For Baseline ResNet with CutMix:
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name rescm_paper_coco --batch_size 6 --total_epoch 60 --num_heads 6 --lam 0.4 --dataset coco --num_cls 80 --cutmix data/resnet101_cutmix_pretrained.pth
For MSL ResNet with CutMix:
CUDA_VISIBLE_DEVICES=0 python train_masksup.py --exp_name masksup01_0.3,0.2,0.5_rescm_coco --batch_size 6 --total_epoch 60 --num_heads 6 --lam 0.4 --dataset coco --num_cls 80 --cutmix data/resnet101_cutmix_pretrained.pth
For Baseline ViT
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name vitl_coco --model vit_L16_224 --img_size 224 --batch_size 6 --total_epoch 40 --num_heads 8 --lam 1 --dataset coco --num_cls 80
For MSL ViT
CUDA_VISIBLE_DEVICES=0 python train_masksup.py --exp_name masksup_vitl_coco --model vit_L16_224 --img_size 224 --batch_size 6 --total_epoch 40 --num_heads 8 --lam 1 --dataset coco --num_cls 80
For ViT-L
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name vitl_wider --model vit_L16_224 --img_size 224 --batch_size 6 --total_epoch 40 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14
For MSL ViT-L
CUDA_VISIBLE_DEVICES=0 python train_masksup.py --exp_name masksup_vitl_wider --model vit_L16_224 --img_size 224 --batch_size 6 --total_epoch 40 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14
For ViT-B
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name vitb_wider --model vit_B16_224 --img_size 224 --batch_size 6 --total_epoch 40 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14
For MSL ViT-B
CUDA_VISIBLE_DEVICES=0 python train_masksup.py --exp_name masksup_vitb_wider --model vit_B16_224 --img_size 224 --batch_size 6 --total_epoch 40 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14
For Baseline ResNet with CutMix:
CUDA_VISIBLE_DEVICES=0 python val.py --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20 --load_from checkpoint/voc_experiments/rescm_paper_voc/epoch_200.pth --cutmix data/resnet101_cutmix_pretrained.pth
For Baseline ResNet with CutMix
CUDA_VISIBLE_DEVICES=0 python val.py --num_heads 6 --lam 0.4 --dataset coco --num_cls 80 --load_from checkpoint/rescm_paper_coco/epoch_100.pth --cutmix data/resnet101_cutmix_pretrained.pth