This repository is the TF2.0 implementation of Forgetful Replay Buffer for Reinforcement Learning from Demonstrations by Alexey Skrynnik, Aleksey Staroverov, Ermek Aitygulov, Kirill Aksenov, Vasilii Davydov, Aleksandr I. Panov.
To install requirements:
pip install -r docker/requirements.txt
To download pretrained weights:
python utils/load_weights.py
To run evaluation in ObtainDiamond task:
python main.py --config configs/eval-diamond.yaml
To run evaluation in Treechop task:
python main.py --config configs/eval-treechop.yaml
Downloading MineRL dataset:
python utils/load_demonstrations.py
Training ForgER on Treechop task:
python main.py --config configs/train-treechop.yaml
Training ForgER on ObtainDiamondDense task:
python main.py --config configs/train-diamond.yaml
Caution: We didn't test reproducibility of results after moving to TF2 version and updating code for MineRL version 0.4.
Item | MineRL2019 | ForgER | ForgER++ |
---|---|---|---|
log | 859 | 882 | 867 |
planks | 805 | 806 | 792 |
stick | 718 | 747 | 790 |
crafting table | 716 | 744 | 790 |
wooden pickaxe | 713 | 744 | 789 |
cobblestone | 687 | 730 | 779 |
stone pickaxe | 642 | 698 | 751 |
furnace | 19 | 48 | 98 |
iron ore | 96 | 109 | 231 |
iron ingot | 19 | 48 | 98 |
iron pickaxe | 12 | 43 | 83 |
diamond | 0 | 0 | 1 |
mean reward | 57.701 | 74.09 | 104.315 |
If you use this repo in your research, please consider citing the paper as follows:
@article{skrynnik2021forgetful,
title={Forgetful experience replay in hierarchical reinforcement learning from expert demonstrations},
author={Skrynnik, Alexey and Staroverov, Aleksey and Aitygulov, Ermek and Aksenov, Kirill and Davydov, Vasilii and Panov, Aleksandr I},
journal={Knowledge-Based Systems},
volume={218},
pages={106844},
year={2021},
publisher={Elsevier}
}