Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introduce plot data collection for different confusion statistics #1775

Merged
merged 1 commit into from
May 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
174 changes: 167 additions & 7 deletions tetrad-lib/src/main/java/edu/cmu/tetrad/search/MarkovCheck.java
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,9 @@
import org.apache.commons.math3.util.Pair;
import org.jetbrains.annotations.NotNull;

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.*;
Expand Down Expand Up @@ -313,24 +316,166 @@ public Double checkAgainstAndersonDarlingTest(List<Double> pValues) {
* @return A list containing two lists: the first list contains the accepted nodes and the second list contains the
* rejected nodes.
*/
public List<List<Node>> getAndersonDarlingTestAcceptsRejectsNodesForAllNodes(IndependenceTest independenceTest, Graph graph, Double threshold) {
public List<List<Node>> getAndersonDarlingTestAcceptsRejectsNodesForAllNodes(IndependenceTest independenceTest, Graph graph, Double threshold, Double shuffleThreshold) {
// When calling, default reject null as <=0.05
List<List<Node>> accepts_rejects = new ArrayList<>();
List<Node> accepts = new ArrayList<>();
List<Node> rejects = new ArrayList<>();
List<Node> allNodes = graph.getNodes();
for (Node x : allNodes) {
List<IndependenceFact> localIndependenceFacts = getLocalIndependenceFacts(x);
List<Double> localPValues = getLocalPValues(independenceTest, localIndependenceFacts);
Double ADTest = checkAgainstAndersonDarlingTest(localPValues);
if (ADTest <= threshold) {
rejects.add(x);
} else {
accepts.add(x);
// All local nodes' p-values for node x
List<List<Double>> shuffledlocalPValues = getLocalPValues(independenceTest, localIndependenceFacts, shuffleThreshold);
for (List<Double> localPValues: shuffledlocalPValues) {
Double ADTest = checkAgainstAndersonDarlingTest(localPValues); // P value obtained from AD test
if (ADTest <= threshold) {
rejects.add(x);
} else {
accepts.add(x);
}
}
}
accepts_rejects.add(accepts);
accepts_rejects.add(rejects);
return accepts_rejects;
}

public List<List<Node>> getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlotData(IndependenceTest independenceTest, Graph estimatedCpdag, Graph trueGraph, Double threshold, Double shuffleThreshold) {
// When calling, default reject null as <=0.05
List<List<Node>> accepts_rejects = new ArrayList<>();
List<Node> accepts = new ArrayList<>();
List<Node> rejects = new ArrayList<>();
List<Node> allNodes = graph.getNodes();

// Confusion stats lists for data processing.
Map<String, String> fileContentMap = new HashMap<>();

List<List<Double>> accepts_AdjP_ADTestP = new ArrayList<>();
List<List<Double>> accepts_AdjR_ADTestP = new ArrayList<>();
List<List<Double>> accepts_AHP_ADTestP = new ArrayList<>();
List<List<Double>> accepts_AHR_ADTestP = new ArrayList<>();
fileContentMap.put("accepts_AdjP_ADTestP_data.csv", "");
fileContentMap.put("accepts_AdjR_ADTestP_data.csv", "");
fileContentMap.put("accepts_AHP_ADTestP_data.csv", "");
fileContentMap.put("accepts_AHR_ADTestP_data.csv", "");

List<List<Double>> rejects_AdjP_ADTestP = new ArrayList<>();
List<List<Double>> rejects_AdjR_ADTestP = new ArrayList<>();
List<List<Double>> rejects_AHP_ADTestP = new ArrayList<>();
List<List<Double>> rejects_AHR_ADTestP = new ArrayList<>();
fileContentMap.put("rejects_AdjP_ADTestP_data.csv", "");
fileContentMap.put("rejects_AdjR_ADTestP_data.csv", "");
fileContentMap.put("rejects_AHP_ADTestP_data.csv", "");
fileContentMap.put("rejects_AHR_ADTestP_data.csv", "");

NumberFormat nf = new DecimalFormat("0.00");
// Classify nodes into accepts and rejects base on ADTest result, and update confusion stats lists accordingly.
for (Node x : allNodes) {
List<IndependenceFact> localIndependenceFacts = getLocalIndependenceFacts(x);
List<Double> ap_ar_ahp_ahr = getPrecisionAndRecallOnMarkovBlanketGraphPlotData(x, estimatedCpdag, trueGraph);
Double ap = ap_ar_ahp_ahr.get(0);
Double ar = ap_ar_ahp_ahr.get(1);
Double ahp = ap_ar_ahp_ahr.get(2);
Double ahr = ap_ar_ahp_ahr.get(3);
// All local nodes' p-values for node x.
List<List<Double>> shuffledlocalPValues = getLocalPValues(independenceTest, localIndependenceFacts, shuffleThreshold); // shuffleThreshold default to be 0.5
for (List<Double> localPValues: shuffledlocalPValues) {
// P value obtained from AD test
Double ADTest = checkAgainstAndersonDarlingTest(localPValues);
// TODO VBC: what should we do for cases when ADTest is NaN and ∞ ?
if (ADTest <= threshold) {
rejects.add(x);
if (!Double.isNaN(ap)) {
rejects_AdjP_ADTestP.add(Arrays.asList(ap, ADTest));
}
if (!Double.isNaN(ar)) {
rejects_AdjR_ADTestP.add(Arrays.asList(ap, ADTest));
}
if (!Double.isNaN(ahp)) {
rejects_AHP_ADTestP.add(Arrays.asList(ap, ADTest));
}
if (!Double.isNaN(ahr)) {
rejects_AHR_ADTestP.add(Arrays.asList(ap, ADTest));
}
} else {
accepts.add(x);
if (!Double.isNaN(ap)) {
accepts_AdjP_ADTestP.add(Arrays.asList(ap, ADTest));
}
if (!Double.isNaN(ar)) {
accepts_AdjR_ADTestP.add(Arrays.asList(ap, ADTest));
}
if (!Double.isNaN(ahp)) {
accepts_AHP_ADTestP.add(Arrays.asList(ap, ADTest));
}
if (!Double.isNaN(ahr)) {
accepts_AHR_ADTestP.add(Arrays.asList(ap, ADTest));
}
}
}
}
accepts_rejects.add(accepts);
accepts_rejects.add(rejects);
// Write into data files.
for (Map.Entry<String, String> entry : fileContentMap.entrySet()) {
try (BufferedWriter writer = new BufferedWriter(new FileWriter(entry.getKey()))) {
writer.write(entry.getValue());
switch (entry.getKey()) {
case "acceptsAdjP_ADTestP_data.csv":
for (List<Double> AdjP_ADTestP_pair : accepts_AdjP_ADTestP) {
writer.write(nf.format(AdjP_ADTestP_pair.get(0)) + "," + nf.format(AdjP_ADTestP_pair.get(1)) + "\n");
}
break;

case "accepts_AdjR_ADTestP_data.csv":
for (List<Double> AdjR_ADTestP_pair : accepts_AdjR_ADTestP) {
writer.write(nf.format(AdjR_ADTestP_pair.get(0)) + "," + nf.format(AdjR_ADTestP_pair.get(1)) + "\n");
}
break;

case "accepts_AHP_ADTestP_data.csv":
for (List<Double> AHP_ADTestP_pair : accepts_AHP_ADTestP) {
writer.write(nf.format(AHP_ADTestP_pair.get(0)) + "," + nf.format(AHP_ADTestP_pair.get(1)) + "\n");
}
break;

case "accepts_AHR_ADTestP_data.csv":
for (List<Double> AHR_ADTestP_pair : accepts_AHR_ADTestP) {
writer.write(nf.format(AHR_ADTestP_pair.get(0)) + "," + nf.format(AHR_ADTestP_pair.get(1)) + "\n");
}
break;

case "rejects_AdjP_ADTestP_data.csv":
for (List<Double> AdjP_ADTestP_pair : rejects_AdjP_ADTestP) {
writer.write(nf.format(AdjP_ADTestP_pair.get(0)) + "," + nf.format(AdjP_ADTestP_pair.get(1)) + "\n");
}
break;

case "rejects_AdjR_ADTestP_data.csv":
for (List<Double> AdjR_ADTestP_pair : rejects_AdjR_ADTestP) {
writer.write(nf.format(AdjR_ADTestP_pair.get(0)) + "," + nf.format(AdjR_ADTestP_pair.get(1)) + "\n");
}
break;

case "rejects_AHP_ADTestP_data.csv":
for (List<Double> AHP_ADTestP_pair : rejects_AHP_ADTestP) {
writer.write(nf.format(AHP_ADTestP_pair.get(0)) + "," + nf.format(AHP_ADTestP_pair.get(1)) + "\n");
}
break;

case "rejects_AHR_ADTestP_data.csv":
for (List<Double> AHR_ADTestP_pair : rejects_AHR_ADTestP) {
writer.write(nf.format(AHR_ADTestP_pair.get(0)) + "," + nf.format(AHR_ADTestP_pair.get(1)) + "\n");
}
break;
default:
break;
}
System.out.println("Successfully written to " + entry.getKey());
} catch (IOException e) {
e.printStackTrace();
}
}
return accepts_rejects;
}

Expand Down Expand Up @@ -362,6 +507,21 @@ public void getPrecisionAndRecallOnMarkovBlanketGraph(Node x, Graph estimatedGra
" ArrowHeadPrecision = " + nf.format(ahp) + " ArrowHeadRecall = " + nf.format(ahr));
}

public List<Double> getPrecisionAndRecallOnMarkovBlanketGraphPlotData(Node x, Graph estimatedGraph, Graph trueGraph) {
// Lookup graph is the same structure as trueGraph's structure but node objects replaced by estimated graph nodes.
Graph lookupGraph = GraphUtils.replaceNodes(trueGraph, estimatedGraph.getNodes());
Graph xMBLookupGraph = GraphUtils.getMarkovBlanketSubgraphWithTargetNode(lookupGraph, x);
System.out.println("xMBLookupGraph:" + xMBLookupGraph);
Graph xMBEstimatedGraph = GraphUtils.getMarkovBlanketSubgraphWithTargetNode(estimatedGraph, x);
System.out.println("xMBEstimatedGraph:" + xMBEstimatedGraph);

double ap = new AdjacencyPrecision().getValue(xMBLookupGraph, xMBEstimatedGraph, null);
double ar = new AdjacencyRecall().getValue(xMBLookupGraph, xMBEstimatedGraph, null);
double ahp = new ArrowheadPrecision().getValue(xMBLookupGraph, xMBEstimatedGraph, null);
double ahr = new ArrowheadRecall().getValue(xMBLookupGraph, xMBEstimatedGraph, null);
return Arrays.asList(ap, ar, ahp, ahr);
}

/**
* Calculates the precision and recall using LocalGraphConfusion
* (which calculates the combination of Adjacency and ArrowHead) on the Markov Blanket graph for a given node.
Expand Down
Loading