Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding Golden Workflows for 2022 and 2023 Data #45836

Merged
merged 1 commit into from
Sep 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 48 additions & 4 deletions Configuration/PyReleaseValidation/python/relval_data_highstats.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,12 +7,12 @@
## Here we define higher (>50k events) stats data workflows
## not to be run as default. 150k, 250k, 500k or 1M events each

## 2024
base_wf_number_2024 = 2024.0
offset_era = 0.1 # less than 10 eras
offset_pd = 0.001 # less than 100 pds
offset_era = 0.1 # less than 10 eras per year
offset_pd = 0.001 # less than 100 pds per year
offset_events = 0.0001 # less than 10 event setups (50k,150k,250k,500k)

## 2024
base_wf_number_2024 = 2024.0
for e_n,era in enumerate(eras_2024):
for p_n,pd in enumerate(pds_2024):
for e_key,evs in event_steps_dict.items():
Expand All @@ -26,5 +26,49 @@
step_name = "Run" + pd + era.split("Run")[1] + "_" + e_key
workflows[wf_number] = ['',[step_name,'HLTDR3_2024','AODNANORUN3_reHLT_2024','HARVESTRUN3_2024']]

## 2023
base_wf_number_2023 = 2023.0
for e_n,era in enumerate(eras_2023):
for p_n,pd in enumerate(pds_2023):
for e_key,evs in event_steps_dict.items():
if "10k" == e_key: # already defined in relval_standard
continue
wf_number = base_wf_number_2023
wf_number = wf_number + offset_era * e_n
wf_number = wf_number + offset_pd * p_n
wf_number = wf_number + offset_events * evs
wf_number = round(wf_number,6)
step_name = "Run" + pd + era.split("Run")[1] + "_" + e_key
workflows[wf_number] = ['',[step_name,'HLTDR3_2023','AODNANORUN3_reHLT_2023','HARVESTRUN3_2023']]


## 2022
base_wf_number_2022 = 2022.0
for e_n,era in enumerate(eras_2022_1):
for p_n,pd in enumerate(pds_2022_1):
for e_key,evs in event_steps_dict.items():
if "10k" == e_key: # already defined in relval_standard
continue
wf_number = base_wf_number_2022
wf_number = wf_number + offset_era * e_n
wf_number = wf_number + offset_pd * p_n
wf_number = wf_number + offset_events * evs
wf_number = round(wf_number,6)
step_name = "Run" + pd + era.split("Run")[1] + "_" + e_key
workflows[wf_number] = ['',[step_name,'HLTDR3_2022','AODNANORUN3_reHLT_2022','HARVESTRUN3_2022']]

for e_n,era in enumerate(eras_2022_2):
for p_n,pd in enumerate(pds_2022_2):
for e_key,evs in event_steps_dict.items():
if "10k" == e_key: # already defined in relval_standard
continue
wf_number = base_wf_number_2022
wf_number = wf_number + offset_era * (e_n + len(eras_2022_1))
wf_number = wf_number + offset_pd * (p_n + len(pds_2022_1))
wf_number = wf_number + offset_events * evs
wf_number = round(wf_number,6)
step_name = "Run" + pd + era.split("Run")[1] + "_" + e_key
workflows[wf_number] = ['',[step_name,'HLTDR3_2022','AODNANORUN3_reHLT_2022','HARVESTRUN3_2022']]



38 changes: 33 additions & 5 deletions Configuration/PyReleaseValidation/python/relval_standard.py
Original file line number Diff line number Diff line change
Expand Up @@ -559,13 +559,16 @@
workflows[142.901] = ['',['RunUPC2023','RECODR3_2024_UPC','HARVESTDPROMPTR3']]
workflows[142.902] = ['',['RunUPC2023','RECODR3_2024_HIN','HARVESTDPROMPTR3']]

## 2024 Data Workflows
##################################################################
### Golden Data Wfs
# for a limited set of eras and PDs not to overflow the IB matrices
#
base_wf_number_2024 = 2024.0
offset_era = 0.1 # less than 10 eras
offset_pd = 0.001 # less than 100 pds
# the full set in relval_data_highstats.py

offset_era = 0.1 # less than 10 eras per year
offset_pd = 0.001 # less than 100 pds per year

# 2024
base_wf_number_2024 = 2024.0
for e_n,era in enumerate(['Run2024D','Run2024C']):
for p_n,pd in enumerate(['JetMET0','ZeroBias']):
wf_number = base_wf_number_2024
Expand All @@ -576,6 +579,31 @@
step_name = "Run" + pd + era.split("Run")[1] + "_10k"
workflows[wf_number] = ['',[step_name,'HLTDR3_2024','AODNANORUN3_reHLT_2024','HARVESTRUN3_2024']]

# 2023
base_wf_number_2023 = 2023.0
for e_n,era in enumerate(['Run2023C', 'Run2023D']):
for p_n,pd in enumerate(['MuonEG','DisplacedJet']):
wf_number = base_wf_number_2023
wf_number = wf_number + offset_era * e_n
wf_number = wf_number + offset_pd * p_n
wf_number = wf_number + 0.0001 * 0.01
wf_number = round(wf_number,6)
step_name = "Run" + pd + era.split("Run")[1] + "_10k"
workflows[wf_number] = ['',[step_name,'HLTDR3_2023','AODNANORUN3_reHLT_2023','HARVESTRUN3_2023']]

# 2022
base_wf_number_2022 = 2022.0
for e_n,era in enumerate(['Run2022B', 'Run2022C']):
for p_n,pd in enumerate(['JetHT','EGamma']):
wf_number = base_wf_number_2022
wf_number = wf_number + offset_era * e_n
wf_number = wf_number + offset_pd * p_n
wf_number = wf_number + 0.0001 * 0.01
wf_number = round(wf_number,6)
step_name = "Run" + pd + era.split("Run")[1] + "_10k"
workflows[wf_number] = ['',[step_name,'HLTDR3_2022','AODNANORUN3_reHLT_2022','HARVESTRUN3_2022']]
##################################################################

### fastsim ###
workflows[5.1] = ['TTbarFS', ['TTbarFS','HARVESTFS']]
workflows[5.2] = ['SingleMuPt10FS', ['SingleMuPt10FS','HARVESTFS']]
Expand Down
47 changes: 43 additions & 4 deletions Configuration/PyReleaseValidation/python/relval_steps.py
Original file line number Diff line number Diff line change
Expand Up @@ -634,13 +634,14 @@
RunHI2023={375491: [[100, 100]]}
steps['RunHIPhysicsRawPrime2023A']={'INPUT':InputInfo(dataSet='/HIPhysicsRawPrime0/HIRun2023A-v1/RAW',label='HI2023A',events=100000,location='STD', ls=RunHI2023)}

### Golden Data Wfs
# reading good runs directly from the latest golden json
##################################################################
### Golden Data Steps
# Reading good runs directly from the latest golden json
# in https://cms-service-dqmdc.web.cern.ch/CAF/certification/
# or (if available)
# or (if available) from eos. the number of events limits
# the files used as input

###2024
# number of events limits the files used as input

pds_2024 = ['BTagMu', 'DisplacedJet', 'EGamma0', 'HcalNZS', 'JetMET0', 'Muon0', 'MuonEG', 'NoBPTX', 'ParkingDoubleMuonLowMass0', 'ParkingHH', 'ParkingLLP', 'ParkingSingleMuon0', 'ParkingVBF0', 'Tau', 'ZeroBias']
eras_2024 = ['Run2024B', 'Run2024C', 'Run2024D', 'Run2024E', 'Run2024F']
Expand All @@ -651,6 +652,44 @@
step_name = "Run" + pd + era.split("Run")[1] + "_" + e_key
steps[step_name] = {'INPUT':InputInfo(dataSet=dataset,label=era.split("Run")[1],events=int(evs*1e6), skimEvents=True, location='STD')}

###2023

pds_2023 = ['BTagMu', 'DisplacedJet', 'EGamma0', 'HcalNZS', 'JetMET0', 'Muon0', 'MuonEG', 'NoBPTX', 'ParkingDoubleElectronLowMass', 'ParkingDoubleMuonLowMass0', 'Tau', 'ZeroBias']
eras_2023 = ['Run2023B', 'Run2023C', 'Run2023D']
# 'MinimumBias' is excluded since apprently no Golden run for /MinimumBias/Run2023{B,C,D}-v1/RAW
for era in eras_2023:
for pd in pds_2023:
dataset = "/" + pd + "/" + era + "-v1/RAW"
for e_key,evs in event_steps_dict.items():
step_name = "Run" + pd + era.split("Run")[1] + "_" + e_key
steps[step_name] = {'INPUT':InputInfo(dataSet=dataset,label=era.split("Run")[1],events=int(evs*1e6), skimEvents=True, location='STD')}

###2022

pds_2022_1 = ['BTagMu', 'DisplacedJet', 'DoubleMuon', 'SingleMuon', 'EGamma', 'HcalNZS', 'JetHT', 'MET', 'MinimumBias', 'MuonEG', 'NoBPTX', 'Tau', 'ZeroBias']
eras_2022_1 = ['Run2022B', 'Run2022C']
for era in eras_2022_1:
for pd in pds_2022_1:
dataset = "/" + pd + "/" + era + "-v1/RAW"
for e_key,evs in event_steps_dict.items():
step_name = "Run" + pd + era.split("Run")[1] + "_" + e_key
steps[step_name] = {'INPUT':InputInfo(dataSet=dataset,label=era.split("Run")[1],events=int(evs*1e6), skimEvents=True, location='STD')}

# PD names changed during the year (!)
pds_2022_2 = ['BTagMu', 'DisplacedJet', 'Muon', 'EGamma', 'HcalNZS', 'JetMET', 'MuonEG', 'NoBPTX', 'Tau', 'ZeroBias']
# Note: 'MinimumBias' is excluded since apprently no Golden run for /MinimumBias/Run2022{D,E}-v1/RAW
eras_2022_2 = ['Run2022D', 'Run2022E']

for era in eras_2022_2:
for pd in pds_2022_2:
dataset = "/" + pd + "/" + era + "-v1/RAW"
for e_key,evs in event_steps_dict.items():
step_name = "Run" + pd + era.split("Run")[1] + "_" + e_key
steps[step_name] = {'INPUT':InputInfo(dataSet=dataset,label=era.split("Run")[1],events=int(evs*1e6), skimEvents=True, location='STD')}


##################################################################

# Highstat HLTPhysics
Run2015DHS=selectedLS([258712,258713,258714,258741,258742,258745,258749,258750,259626,259637,259683,259685,259686,259721,259809,259810,259818,259820,259821,259822,259862,259890,259891])
steps['RunHLTPhy2015DHS']={'INPUT':InputInfo(dataSet='/HLTPhysics/Run2015D-v1/RAW',label='2015DHS',events=100000,location='STD', ls=Run2015DHS)}
Expand Down