Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new tests #430

Merged
merged 6 commits into from
Aug 2, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion brainpy/_src/dnn/conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,6 @@ def __init__(
name: str = None,
):
super(_GeneralConv, self).__init__(name=name, mode=mode)
check.is_subclass(self.mode, (bm.TrainingMode, bm.BatchingMode), self.name)

self.num_spatial_dims = num_spatial_dims
self.in_channels = in_channels
Expand Down
24 changes: 22 additions & 2 deletions brainpy/_src/dnn/rnncells.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,8 @@ class RNNCell(Layer):

Parameters
----------
num_in: int
The dimension of the input vector
num_out: int
The number of hidden unit in the node.
state_initializer: callable, Initializer, bm.ndarray, jax.numpy.ndarray
Expand Down Expand Up @@ -149,6 +151,8 @@ class GRUCell(Layer):

Parameters
----------
num_in: int
The dimension of the input vector
num_out: int
The number of hidden unit in the node.
state_initializer: callable, Initializer, bm.ndarray, jax.numpy.ndarray
Expand Down Expand Up @@ -280,6 +284,8 @@ class LSTMCell(Layer):

Parameters
----------
num_in: int
The dimension of the input vector
num_out: int
The number of hidden unit in the node.
state_initializer: callable, Initializer, bm.ndarray, jax.numpy.ndarray
Expand Down Expand Up @@ -531,7 +537,8 @@ def __init__(
rhs_dilation=rhs_dilation,
groups=groups,
w_initializer=w_initializer,
b_initializer=b_initializer, )
b_initializer=b_initializer,
mode=mode)
self.hidden_to_hidden = _GeneralConv(num_spatial_dims=num_spatial_dims,
in_channels=out_channels,
out_channels=out_channels * 4,
Expand All @@ -542,7 +549,8 @@ def __init__(
rhs_dilation=rhs_dilation,
groups=groups,
w_initializer=w_initializer,
b_initializer=b_initializer, )
b_initializer=b_initializer,
mode=mode)
self.reset_state()

def reset_state(self, batch_size: int = 1):
Expand Down Expand Up @@ -599,6 +607,10 @@ def __init__(
):
"""Constructs a 1-D convolutional LSTM.

Input: [Batch_Size, Input_Data_Size, Input_Channel_Size]

Output: [Batch_Size, Output_Data_Size, Output_Channel_Size]

Args:
input_shape: Shape of the inputs excluding batch size.
out_channels: Number of output channels.
Expand Down Expand Up @@ -656,6 +668,10 @@ def __init__(
):
"""Constructs a 2-D convolutional LSTM.

Input: [Batch_Size, Input_Data_Size_Dim1,Input_Data_Size_Dim2, Input_Channel_Size]

Output: [Batch_Size, Output_Data_Size_Dim1,Output_Data_Size_Dim2 , Output_Channel_Size]

Args:
input_shape: Shape of the inputs excluding batch size.
out_channels: Number of output channels.
Expand Down Expand Up @@ -713,6 +729,10 @@ def __init__(
):
"""Constructs a 3-D convolutional LSTM.

Input: [Batch_Size, Input_Data_Size_Dim1,Input_Data_Size_Dim2,Input_Data_Size_Dim3 ,Input_Channel_Size]

Output: [Batch_Size, Output_Data_Size_Dim1,Output_Data_Size_Dim2,Output_Data_Size_Dim3,Output_Channel_Size]

Args:
input_shape: Shape of the inputs excluding batch size.
out_channels: Number of output channels.
Expand Down
Loading