Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new tests #430

Merged
merged 6 commits into from
Aug 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 34 additions & 22 deletions brainpy/_src/dnn/conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ class _GeneralConv(Layer):
The name of the object.
"""

supported_modes = (bm.TrainingMode, bm.BatchingMode)
supported_modes = (bm.TrainingMode, bm.BatchingMode,bm.NonBatchingMode)

def __init__(
self,
Expand All @@ -101,7 +101,6 @@ def __init__(
name: str = None,
):
super(_GeneralConv, self).__init__(name=name, mode=mode)
check.is_subclass(self.mode, (bm.TrainingMode, bm.BatchingMode), self.name)

self.num_spatial_dims = num_spatial_dims
self.in_channels = in_channels
Expand Down Expand Up @@ -149,14 +148,18 @@ def __init__(
self.b = bm.TrainVar(self.b)

def _check_input_dim(self, x):
if x.ndim != self.num_spatial_dims + 2:
raise ValueError(f"expected {self.num_spatial_dims + 2}D input (got {x.ndim}D input)")
if x.ndim != self.num_spatial_dims + 2 and x.ndim != self.num_spatial_dims + 1:
raise ValueError(f"expected {self.num_spatial_dims + 2}D or {self.num_spatial_dims + 1}D input (got {x.ndim}D input)")
if self.in_channels != x.shape[-1]:
raise ValueError(f"input channels={x.shape[-1]} needs to have "
f"the same size as in_channels={self.in_channels}.")

def update(self, x):
self._check_input_dim(x)
nonbatching=False
if x.ndim == self.num_spatial_dims + 1:
nonbatching=True
x=x.unsqueeze(0)
w = self.w.value
if self.mask is not None:
try:
Expand All @@ -172,7 +175,10 @@ def update(self, x):
rhs_dilation=self.rhs_dilation,
feature_group_count=self.groups,
dimension_numbers=self.dimension_numbers)
return y if self.b is None else (y + self.b.value)
if nonbatching:
return y[0] if self.b is None else (y + self.b.value)[0]
else:
return y if self.b is None else (y + self.b.value)

def __repr__(self):
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
Expand Down Expand Up @@ -265,8 +271,8 @@ def __init__(
name=name)

def _check_input_dim(self, x):
if x.ndim != 3:
raise ValueError(f"expected 3D input (got {x.ndim}D input)")
if x.ndim != 3 and x.ndim !=2 :
raise ValueError(f"expected 3D or 2D input (got {x.ndim}D input)")
if self.in_channels != x.shape[-1]:
raise ValueError(f"input channels={x.shape[-1]} needs to have "
f"the same size as in_channels={self.in_channels}.")
Expand Down Expand Up @@ -358,8 +364,8 @@ def __init__(
name=name)

def _check_input_dim(self, x):
if x.ndim != 4:
raise ValueError(f"expected 4D input (got {x.ndim}D input)")
if x.ndim != 4 and x.ndim !=3:
raise ValueError(f"expected 4D or 3D input (got {x.ndim}D input)")
if self.in_channels != x.shape[-1]:
raise ValueError(f"input channels={x.shape[-1]} needs to have "
f"the same size as in_channels={self.in_channels}.")
Expand Down Expand Up @@ -451,8 +457,8 @@ def __init__(
name=name)

def _check_input_dim(self, x):
if x.ndim != 5:
raise ValueError(f"expected 5D input (got {x.ndim}D input)")
if x.ndim != 5 and x.ndim != 4:
raise ValueError(f"expected 5D or 4D input (got {x.ndim}D input)")
if self.in_channels != x.shape[-1]:
raise ValueError(f"input channels={x.shape[-1]} needs to have "
f"the same size as in_channels={self.in_channels}.")
Expand All @@ -464,7 +470,7 @@ def _check_input_dim(self, x):


class _GeneralConvTranspose(Layer):
supported_modes = (bm.TrainingMode, bm.BatchingMode)
supported_modes = (bm.TrainingMode, bm.BatchingMode, bm.NonBatchingMode)

def __init__(
self,
Expand All @@ -481,9 +487,9 @@ def __init__(
mode: bm.Mode = None,
name: str = None,
):
super().__init__(name=name, mode=mode)
super(_GeneralConvTranspose,self).__init__(name=name, mode=mode)

assert self.mode.is_parent_of(bm.TrainingMode, bm.BatchingMode)
assert self.mode.is_parent_of(bm.TrainingMode, bm.BatchingMode,bm.NonBatchingMode)

self.num_spatial_dims = num_spatial_dims
self.in_channels = in_channels
Expand Down Expand Up @@ -530,7 +536,10 @@ def _check_input_dim(self, x):

def update(self, x):
self._check_input_dim(x)

nonbatching = False
if x.ndim==self.num_spatial_dims + 1:
nonbatching=True
x=x.unsqueeze(0)
w = self.w.value
if self.mask is not None:
try:
Expand All @@ -545,7 +554,10 @@ def update(self, x):
precision=self.precision,
rhs_dilation=None,
dimension_numbers=self.dimension_numbers)
return y if self.b is None else (y + self.b.value)
if nonbatching:
return y[0] if self.b is None else (y + self.b.value)[0]
else:
return y if self.b is None else (y + self.b.value)

def __repr__(self):
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
Expand Down Expand Up @@ -608,8 +620,8 @@ def __init__(
)

def _check_input_dim(self, x):
if x.ndim != 3:
raise ValueError(f"expected 3D input (got {x.ndim}D input)")
if x.ndim != 3 and x.ndim != 2:
raise ValueError(f"expected 3D or 2D input (got {x.ndim}D input)")
if self.in_channels != x.shape[-1]:
raise ValueError(f"input channels={x.shape[-1]} needs to have "
f"the same size as in_channels={self.in_channels}.")
Expand Down Expand Up @@ -664,8 +676,8 @@ def __init__(
)

def _check_input_dim(self, x):
if x.ndim != 4:
raise ValueError(f"expected 4D input (got {x.ndim}D input)")
if x.ndim != 4 and x.ndim != 3:
raise ValueError(f"expected 4D or 3D input (got {x.ndim}D input)")
if self.in_channels != x.shape[-1]:
raise ValueError(f"input channels={x.shape[-1]} needs to have "
f"the same size as in_channels={self.in_channels}.")
Expand Down Expand Up @@ -726,8 +738,8 @@ def __init__(
)

def _check_input_dim(self, x):
if x.ndim != 5:
raise ValueError(f"expected 5D input (got {x.ndim}D input)")
if x.ndim != 5 and x.ndim != 4:
raise ValueError(f"expected 5D or 4D input (got {x.ndim}D input)")
if self.in_channels != x.shape[-1]:
raise ValueError(f"input channels={x.shape[-1]} needs to have "
f"the same size as in_channels={self.in_channels}.")
3 changes: 2 additions & 1 deletion brainpy/_src/dnn/normalization.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,7 @@ class BatchNorm(Layer):
.. [1] Ioffe, Sergey and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” ArXiv abs/1502.03167 (2015): n. pag.

"""
supported_modes = (bm.BatchingMode, bm.TrainingMode)

def __init__(
self,
Expand All @@ -100,7 +101,7 @@ def __init__(
name: Optional[str] = None,
):
super(BatchNorm, self).__init__(name=name, mode=mode)
check.is_subclass(self.mode, (bm.BatchingMode, bm.TrainingMode), self.name)
# check.is_subclass(self.mode, (bm.BatchingMode, bm.TrainingMode), self.name)

# parameters
self.num_features = num_features
Expand Down
32 changes: 26 additions & 6 deletions brainpy/_src/dnn/rnncells.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,8 @@ class RNNCell(Layer):

Parameters
----------
num_in: int
The dimension of the input vector
num_out: int
The number of hidden unit in the node.
state_initializer: callable, Initializer, bm.ndarray, jax.numpy.ndarray
Expand Down Expand Up @@ -111,7 +113,7 @@ def __init__(
self.state[:] = self.state2train

def reset_state(self, batch_size=None):
self.state.value = parameter(self._state_initializer, (batch_size, self.num_out), allow_none=False)
self.state.value = parameter(self._state_initializer, (batch_size, self.num_out,), allow_none=False)
if self.train_state:
self.state2train.value = parameter(self._state_initializer, self.num_out, allow_none=False)
self.state[:] = self.state2train
Expand Down Expand Up @@ -149,6 +151,8 @@ class GRUCell(Layer):

Parameters
----------
num_in: int
The dimension of the input vector
num_out: int
The number of hidden unit in the node.
state_initializer: callable, Initializer, bm.ndarray, jax.numpy.ndarray
Expand Down Expand Up @@ -280,6 +284,8 @@ class LSTMCell(Layer):

Parameters
----------
num_in: int
The dimension of the input vector
num_out: int
The number of hidden unit in the node.
state_initializer: callable, Initializer, bm.ndarray, jax.numpy.ndarray
Expand Down Expand Up @@ -363,15 +369,15 @@ def reset_state(self, batch_size=None):
self.state[:] = self.state2train

def update(self, x):
h, c = jnp.split(self.state.value, 2, axis=-1)
h, c = bm.split(self.state.value, 2, axis=-1)
gated = x @ self.Wi
if self.b is not None:
gated += self.b
gated += h @ self.Wh
i, g, f, o = jnp.split(gated, indices_or_sections=4, axis=-1)
i, g, f, o = bm.split(gated, indices_or_sections=4, axis=-1)
c = bm.sigmoid(f + 1.) * c + bm.sigmoid(i) * self.activation(g)
h = bm.sigmoid(o) * self.activation(c)
self.state.value = jnp.concatenate([h, c], axis=-1)
self.state.value = bm.concatenate([h, c], axis=-1)
return h

@property
Expand Down Expand Up @@ -531,7 +537,8 @@ def __init__(
rhs_dilation=rhs_dilation,
groups=groups,
w_initializer=w_initializer,
b_initializer=b_initializer, )
b_initializer=b_initializer,
mode=mode)
self.hidden_to_hidden = _GeneralConv(num_spatial_dims=num_spatial_dims,
in_channels=out_channels,
out_channels=out_channels * 4,
Expand All @@ -542,7 +549,8 @@ def __init__(
rhs_dilation=rhs_dilation,
groups=groups,
w_initializer=w_initializer,
b_initializer=b_initializer, )
b_initializer=b_initializer,
mode=mode)
self.reset_state()

def reset_state(self, batch_size: int = 1):
Expand Down Expand Up @@ -599,6 +607,10 @@ def __init__(
):
"""Constructs a 1-D convolutional LSTM.

Input: [Batch_Size, Input_Data_Size, Input_Channel_Size]

Output: [Batch_Size, Output_Data_Size, Output_Channel_Size]

Args:
input_shape: Shape of the inputs excluding batch size.
out_channels: Number of output channels.
Expand Down Expand Up @@ -656,6 +668,10 @@ def __init__(
):
"""Constructs a 2-D convolutional LSTM.

Input: [Batch_Size, Input_Data_Size_Dim1,Input_Data_Size_Dim2, Input_Channel_Size]

Output: [Batch_Size, Output_Data_Size_Dim1,Output_Data_Size_Dim2 , Output_Channel_Size]

Args:
input_shape: Shape of the inputs excluding batch size.
out_channels: Number of output channels.
Expand Down Expand Up @@ -713,6 +729,10 @@ def __init__(
):
"""Constructs a 3-D convolutional LSTM.

Input: [Batch_Size, Input_Data_Size_Dim1,Input_Data_Size_Dim2,Input_Data_Size_Dim3 ,Input_Channel_Size]

Output: [Batch_Size, Output_Data_Size_Dim1,Output_Data_Size_Dim2,Output_Data_Size_Dim3,Output_Channel_Size]

Args:
input_shape: Shape of the inputs excluding batch size.
out_channels: Number of output channels.
Expand Down
1 change: 0 additions & 1 deletion brainpy/_src/dnn/tests/test_activation.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
import brainpy.math as bm
from absl.testing import parameterized
from absl.testing import absltest
import brainpy as bp
Expand Down
Loading