Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a Galaxy tool for TabPFN package (by Prof. Hutter's group) #1533

Merged
merged 17 commits into from
Jan 15, 2025
Merged
13 changes: 13 additions & 0 deletions tools/tabpfn/.shed.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
name: tabpfn
owner: bgruening
description: Tabular data prediction using TabPFN using Pytorch.
long_description: |
The TabPFN is a neural network that learned to do tabular data prediction.
This is the original CUDA-supporting pytorch impelementation.
remote_repository_url: https://github.com/bgruening/galaxytools/tree/master/tools/tabpfn
homepage_url: https://github.com/bgruening/galaxytools/tree/master/tools/tabpfn
type:
categories:
- Machine Learning
maintainers:
anuprulez
54 changes: 54 additions & 0 deletions tools/tabpfn/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
"""
Tabular data prediction using TabPFN
"""
import argparse
import time

import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import accuracy_score, average_precision_score, precision_recall_curve
from tabpfn import TabPFNClassifier


def separate_features_labels(data):
df = pd.read_csv(data, sep="\t")
labels = df.iloc[:, -1]
features = df.iloc[:, :-1]
return features, labels


def train_evaluate(args):
"""
Train TabPFN
"""
tr_features, tr_labels = separate_features_labels(args["train_data"])
te_features, te_labels = separate_features_labels(args["test_data"])
classifier = TabPFNClassifier(device='cpu')
s_time = time.time()
classifier.fit(tr_features, tr_labels)
e_time = time.time()
print("Time taken by TabPFN for training: {} seconds".format(e_time - s_time))
y_eval = classifier.predict(te_features)
print('Accuracy', accuracy_score(te_labels, y_eval))
pred_probas_test = classifier.predict_proba(te_features)
te_features["predicted_labels"] = y_eval
te_features.to_csv("output_predicted_data", sep="\t", index=None)
precision, recall, thresholds = precision_recall_curve(te_labels, pred_probas_test[:, 1])
average_precision = average_precision_score(te_labels, pred_probas_test[:, 1])
plt.figure(figsize=(8, 6))
plt.plot(recall, precision, label=f'Precision-Recall Curve (AP={average_precision:.2f})')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision-Recall Curve')
plt.legend(loc='lower left')
plt.grid(True)
plt.savefig("output_prec_recall_curve.png")


if __name__ == "__main__":
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("-trdata", "--train_data", required=True, help="Train data")
arg_parser.add_argument("-tedata", "--test_data", required=True, help="Test data")
# get argument values
args = vars(arg_parser.parse_args())
train_evaluate(args)
62 changes: 62 additions & 0 deletions tools/tabpfn/tabpfn.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
<tool id="tabpfn" name="Tabular data prediction using TabPFN" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="23.0">
<description>with PyTorch</description>
<macros>
<token name="@TOOL_VERSION@">2.0.3</token>
<token name="@VERSION_SUFFIX@">0</token>
</macros>
<creator>
<organization name="European Galaxy Team" url="https://galaxyproject.org/eu/" />
<person givenName="Anup" familyName="Kumar" email="[email protected]" />
<person givenName="Frank" familyName="Hutter" email="[email protected]" />
</creator>
<requirements>
<requirement type="package" version="@TOOL_VERSION@">tabpfn</requirement>
<requirement type="package" version="2.2.2">pandas</requirement>
<requirement type="package" version="3.9.2">matplotlib</requirement>
</requirements>
<version_command>echo "@VERSION@"</version_command>
<command detect_errors="aggressive">
<![CDATA[
python '$__tool_directory__/main.py'
--train_data '$train_data'
--test_data '$test_data'
]]>
</command>
<inputs>
<param name="train_data" type="data" format="tabular" label="Train data" help="Please provide training data for training model."/>
<param name="test_data" type="data" format="tabular" label="Test data" help="Please provide test data for evaluating model."/>
</inputs>
<outputs>
<data format="tabular" name="output_predicted_data" from_work_dir="output_predicted_data" label="Predicted data"></data>
<data format="png" name="output_prec_recall_curve" from_work_dir="output_prec_recall_curve" label="Precision-recall curve"></data>
</outputs>
<tests>
<test>
<param name="train_data" value="local_train_rows.tabular" ftype="tabular" />
<param name="test_data" value="local_test_rows.tabular" ftype="tabular" />
<output name="output_predicted_data">
<assert_contents>
<has_n_columns n="42" />
<has_n_lines n="3" />
</assert_contents>
</output>
</test>
</tests>
<help>
<![CDATA[
**What it does**
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A slightly better help would be nice :)


Classification on tabular data by TabPFN

**Input files**
- Training data: the training data should contain features and the last column should be the class labels. It could either be tabular or in CSV format.
- Test data: the test data should also contain the same features as the training data and the last column should be the class labels. It could either be tabular or in CSV format.

**Output files**
- Predicted data along with predicted labels
]]>
</help>
<citations>
<citation type="doi">10.1038/s41586-024-08328-6</citation>
</citations>
</tool>
3 changes: 3 additions & 0 deletions tools/tabpfn/test-data/local_test_rows.tabular
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
SpMax_L J_Dz(e) nHM F01[N-N] F04[C-N] NssssC nCb- C% nCp nO F03[C-N] SdssC HyWi_B(m) LOC SM6_L F03[C-O] Me Mi nN-N nArNO2 nCRX3 SpPosA_B(p) nCIR B01[C-Br] B03[C-Cl] N-073 SpMax_A Psi_i_1d B04[C-Br] SdO TI2_L nCrt C-026 F02[C-N] nHDon SpMax_B(m) Psi_i_A nN SM6_B(m) nArCOOR nX predicted_labels
3.919 2.6909 0 0 0 0 0 31.4 2 0 0 0 3.106 2.55 9.002 0 0.96 1.142 0 0 0 1.201 0 0 0 0 1.932 0.011 0 0 4.489 0 0 0 0 2.949 1.591 0 7.253 0 0 1
4.17 2.1144 0 0 0 0 0 30.8 1 1 0 0 2.461 1.393 8.723 1 0.989 1.144 0 0 0 1.104 1 0 0 0 2.214 -0.204 0 0 1.542 0 0 0 0 3.315 1.967 0 7.257 0 0 1
Loading
Loading