Skip to content

Commit

Permalink
[Feature] Percentage columns in Table Viz (#3586)
Browse files Browse the repository at this point in the history
* Added percent metric options to table viz

* Added unit tests for TableViz

* fixed code for python3

* bump travis
  • Loading branch information
Mogball authored and mistercrunch committed Oct 17, 2017
1 parent adef519 commit e121a85
Show file tree
Hide file tree
Showing 5 changed files with 293 additions and 6 deletions.
13 changes: 13 additions & 0 deletions superset/assets/javascripts/explore/stores/controls.jsx
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,19 @@ export const controls = {
description: t('One or many metrics to display'),
},

percent_metrics: {
type: 'SelectControl',
multi: true,
label: t('Percentage Metrics'),
valueKey: 'metric_name',
optionRenderer: m => <MetricOption metric={m} />,
valueRenderer: m => <MetricOption metric={m} />,
mapStateToProps: state => ({
options: (state.datasource) ? state.datasource.metrics : [],
}),
description: t('Metrics for which percentage of total are to be displayed'),
},

y_axis_bounds: {
type: 'BoundsControl',
label: t('Y Axis Bounds'),
Expand Down
5 changes: 3 additions & 2 deletions superset/assets/javascripts/explore/stores/visTypes.js
Original file line number Diff line number Diff line change
Expand Up @@ -338,8 +338,9 @@ export const visTypes = {
label: t('GROUP BY'),
description: t('Use this section if you want a query that aggregates'),
controlSetRows: [
['groupby', 'metrics'],
['include_time', null],
['groupby'],
['metrics', 'percent_metrics'],
['include_time'],
['timeseries_limit_metric', 'order_desc'],
],
},
Expand Down
20 changes: 18 additions & 2 deletions superset/assets/visualizations/table.js
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,10 @@ function tableVis(slice, payload) {
const data = payload.data;
const fd = slice.formData;

// Removing metrics (aggregates) that are strings
let metrics = fd.metrics || [];
// Add percent metrics
metrics = metrics.concat((fd.percent_metrics || []).map(m => '%' + m));
// Removing metrics (aggregates) that are strings
metrics = metrics.filter(m => !isNaN(data.records[0][m]));

function col(c) {
Expand All @@ -42,7 +44,18 @@ function tableVis(slice, payload) {
'table-condensed table-hover dataTable no-footer', true)
.attr('width', '100%');

const cols = data.columns.map(c => slice.datasource.verbose_map[c] || c);
const verboseMap = slice.datasource.verbose_map;
const cols = data.columns.map((c) => {
if (verboseMap[c]) {
return verboseMap[c];
}
// Handle verbose names for percents
if (c[0] === '%') {
const cName = c.substring(1);
return '% ' + (verboseMap[cName] || cName);
}
return c;
});

table.append('thead').append('tr')
.selectAll('th')
Expand Down Expand Up @@ -72,6 +85,9 @@ function tableVis(slice, payload) {
if (isMetric) {
html = slice.d3format(c, val);
}
if (c[0] === '%') {
html = d3.format('.3p')(val);
}
return {
col: c,
val,
Expand Down
30 changes: 30 additions & 0 deletions superset/viz.py
Original file line number Diff line number Diff line change
Expand Up @@ -384,13 +384,43 @@ def query_obj(self):
d['metrics'] += [sort_by]
d['orderby'] = [(sort_by, not fd.get("order_desc", True))]

# Add all percent metrics that are not already in the list
if 'percent_metrics' in fd:
d['metrics'] = d['metrics'] + list(filter(
lambda m: m not in d['metrics'],
fd['percent_metrics']
))

d['is_timeseries'] = self.should_be_timeseries()
return d

def get_data(self, df):
fd = self.form_data
if not self.should_be_timeseries() and DTTM_ALIAS in df:
del df[DTTM_ALIAS]

# Sum up and compute percentages for all percent metrics
percent_metrics = fd.get('percent_metrics', [])
if len(percent_metrics):
percent_metrics = list(filter(lambda m: m in df, percent_metrics))
metric_sums = {
m: reduce(lambda a, b: a + b, df[m])
for m in percent_metrics
}
metric_percents = {
m: list(map(lambda a: a / metric_sums[m], df[m]))
for m in percent_metrics
}
for m in percent_metrics:
m_name = '%' + m
df[m_name] = pd.Series(metric_percents[m], name=m_name)
# Remove metrics that are not in the main metrics list
for m in filter(
lambda m: m not in fd['metrics'] and m in df.columns,
percent_metrics
):
del df[m]

return dict(
records=df.to_dict(orient="records"),
columns=list(df.columns),
Expand Down
231 changes: 229 additions & 2 deletions tests/viz_tests.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,236 @@
import unittest
import pandas as pd
import superset.viz as viz
import superset.utils as utils

from superset.utils import DTTM_ALIAS
from mock import Mock, patch
from datetime import datetime, timedelta

class BaseVizTestCase(unittest.TestCase):
def test_constructor_exception_no_datasource(self):
form_data = {}
datasource = None
with self.assertRaises(Exception):
viz.BaseViz(datasource, form_data)

def test_get_fillna_returns_default_on_null_columns(self):
form_data = {
'viz_type': 'table',
'token': '12345',
}
datasource = {'type': 'table'}
test_viz = viz.BaseViz(datasource, form_data);
self.assertEqual(
test_viz.default_fillna,
test_viz.get_fillna_for_columns()
)

def test_get_df_returns_empty_df(self):
datasource = Mock()
datasource.type = 'table'
mock_dttm_col = Mock()
mock_dttm_col.python_date_format = Mock()
datasource.get_col = Mock(return_value=mock_dttm_col)
form_data = {'dummy': 123}
query_obj = {'granularity': 'day'}
results = Mock()
results.query = Mock()
results.status = Mock()
results.error_message = None
results.df = Mock()
results.df.empty = True
datasource.query = Mock(return_value=results)
test_viz = viz.BaseViz(datasource, form_data)
result = test_viz.get_df(query_obj)
self.assertEqual(type(result), pd.DataFrame)
self.assertTrue(result.empty)
self.assertEqual(test_viz.error_message, 'No data.')
self.assertEqual(test_viz.status, utils.QueryStatus.FAILED)

def test_get_df_handles_dttm_col(self):
datasource = Mock()
datasource.type = 'table'
datasource.offset = 1
mock_dttm_col = Mock()
mock_dttm_col.python_date_format = 'epoch_ms'
datasource.get_col = Mock(return_value=mock_dttm_col)
form_data = {'dummy': 123}
query_obj = {'granularity': 'day'}
results = Mock()
results.query = Mock()
results.status = Mock()
results.error_message = Mock()
df = Mock()
df.columns = [DTTM_ALIAS]
f_datetime = datetime(1960, 1, 1, 5, 0)
df.__getitem__ = Mock(return_value=pd.Series([f_datetime]))
df.__setitem__ = Mock()
df.replace = Mock()
df.fillna = Mock()
results.df = df
results.df.empty = False
datasource.query = Mock(return_value=results)
test_viz = viz.BaseViz(datasource, form_data)
test_viz.get_fillna_for_columns = Mock(return_value=0)
result = test_viz.get_df(query_obj)
mock_call = df.__setitem__.mock_calls[0]
self.assertEqual(mock_call[1][0], DTTM_ALIAS)
self.assertFalse(mock_call[1][1].empty)
self.assertEqual(mock_call[1][1][0], f_datetime)
mock_call = df.__setitem__.mock_calls[1]
self.assertEqual(mock_call[1][0], DTTM_ALIAS)
self.assertEqual(mock_call[1][1][0].hour, 6)
self.assertEqual(mock_call[1][1].dtype, 'datetime64[ns]')
mock_dttm_col.python_date_format = 'utc'
result = test_viz.get_df(query_obj)
mock_call = df.__setitem__.mock_calls[2]
self.assertEqual(mock_call[1][0], DTTM_ALIAS)
self.assertFalse(mock_call[1][1].empty)
self.assertEqual(mock_call[1][1][0].hour, 6)
mock_call = df.__setitem__.mock_calls[3]
self.assertEqual(mock_call[1][0], DTTM_ALIAS)
self.assertEqual(mock_call[1][1][0].hour, 7)
self.assertEqual(mock_call[1][1].dtype, 'datetime64[ns]')

def test_cache_timeout(self):
datasource = Mock()
form_data = {'cache_timeout': '10'}
test_viz = viz.BaseViz(datasource, form_data)
self.assertEqual(10, test_viz.cache_timeout)
del form_data['cache_timeout']
datasource.cache_timeout = 156
self.assertEqual(156, test_viz.cache_timeout)
datasource.cache_timeout = None
datasource.database = Mock()
datasource.database.cache_timeout= 1666
self.assertEqual(1666, test_viz.cache_timeout)


class TableVizTestCase(unittest.TestCase):
def test_get_data_applies_percentage(self):
form_data = {
'percent_metrics': ['sum__A', 'avg__B'],
'metrics': ['sum__A', 'count', 'avg__C'],
}
datasource = Mock()
raw = {}
raw['sum__A'] = [15, 20, 25, 40]
raw['avg__B'] = [10, 20, 5, 15]
raw['avg__C'] = [11, 22, 33, 44]
raw['count'] = [6, 7, 8, 9]
raw['groupA'] = ['A', 'B', 'C', 'C']
raw['groupB'] = ['x', 'x', 'y', 'z']
df = pd.DataFrame(raw)
test_viz = viz.TableViz(datasource, form_data)
data = test_viz.get_data(df)
# Check method correctly transforms data and computes percents
self.assertEqual(set([
'groupA', 'groupB', 'count',
'sum__A', 'avg__C',
'%sum__A', '%avg__B',
]), set(data['columns']))
expected = [
{
'groupA': 'A', 'groupB': 'x',
'count': 6, 'sum__A': 15, 'avg__C': 11,
'%sum__A': 0.15, '%avg__B': 0.2,
},
{
'groupA': 'B', 'groupB': 'x',
'count': 7, 'sum__A': 20, 'avg__C': 22,
'%sum__A': 0.2, '%avg__B': 0.4,
},
{
'groupA': 'C', 'groupB': 'y',
'count': 8, 'sum__A': 25, 'avg__C': 33,
'%sum__A': 0.25, '%avg__B': 0.1,
},
{
'groupA': 'C', 'groupB': 'z',
'count': 9, 'sum__A': 40, 'avg__C': 44,
'%sum__A': 0.40, '%avg__B': 0.3,
},
]
self.assertEqual(expected, data['records'])

@patch('superset.viz.BaseViz.query_obj')
def test_query_obj_merges_percent_metrics(self, super_query_obj):
datasource = Mock()
form_data = {
'percent_metrics': ['sum__A', 'avg__B', 'max__Y'],
'metrics': ['sum__A', 'count', 'avg__C'],
}
test_viz = viz.TableViz(datasource, form_data)
f_query_obj = {
'metrics': form_data['metrics']
}
super_query_obj.return_value = f_query_obj
query_obj = test_viz.query_obj()
self.assertEqual([
'sum__A', 'count', 'avg__C',
'avg__B', 'max__Y'
], query_obj['metrics'])

@patch('superset.viz.BaseViz.query_obj')
def test_query_obj_throws_columns_and_metrics(self, super_query_obj):
datasource = Mock()
form_data = {
'all_columns': ['A', 'B'],
'metrics': ['x', 'y'],
}
super_query_obj.return_value = {}
test_viz = viz.TableViz(datasource, form_data)
with self.assertRaises(Exception):
test_viz.query_obj()
del form_data['metrics']
form_data['groupby'] = ['B', 'C']
test_viz = viz.TableViz(datasource, form_data)
with self.assertRaises(Exception):
test_viz.query_obj()

@patch('superset.viz.BaseViz.query_obj')
def test_query_obj_merges_all_columns(self, super_query_obj):
datasource = Mock()
form_data = {
'all_columns': ['colA', 'colB', 'colC'],
'order_by_cols': ['["colA", "colB"]', '["colC"]']
}
super_query_obj.return_value = {
'columns': ['colD', 'colC'],
'groupby': ['colA', 'colB'],
}
test_viz = viz.TableViz(datasource, form_data)
query_obj = test_viz.query_obj()
self.assertEqual(form_data['all_columns'], query_obj['columns'])
self.assertEqual([], query_obj['groupby'])
self.assertEqual([['colA', 'colB'], ['colC']], query_obj['orderby'])

@patch('superset.viz.BaseViz.query_obj')
def test_query_obj_uses_sortby(self, super_query_obj):
datasource = Mock()
form_data = {
'timeseries_limit_metric': '__time__',
'order_desc': False
}
super_query_obj.return_value = {
'metrics': ['colA', 'colB']
}
test_viz = viz.TableViz(datasource, form_data)
query_obj = test_viz.query_obj()
self.assertEqual([
'colA', 'colB', '__time__'
], query_obj['metrics'])
self.assertEqual([(
'__time__', True
)], query_obj['orderby'])

def test_should_be_timeseries_raises_when_no_granularity(self):
datasource = Mock()
form_data = {'include_time': True}
test_viz = viz.TableViz(datasource, form_data)
with self.assertRaises(Exception):
test_viz.should_be_timeseries()


class PairedTTestTestCase(unittest.TestCase):
Expand Down Expand Up @@ -97,7 +324,7 @@ def test_get_data_transforms_dataframe(self):
},
],
}
self.assertEquals(data, expected)
self.assertEqual(data, expected)

def test_get_data_empty_null_keys(self):
form_data = {
Expand Down Expand Up @@ -135,7 +362,7 @@ def test_get_data_empty_null_keys(self):
},
],
}
self.assertEquals(data, expected)
self.assertEqual(data, expected)


class PartitionVizTestCase(unittest.TestCase):
Expand Down

0 comments on commit e121a85

Please sign in to comment.