Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

328/cran resubmission/remove osf tests #339

Merged
merged 10 commits into from
Jan 23, 2025
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Type: Package
Package: serocalculator
Title: Estimating Infection Rates from Serological Data
Version: 1.2.0.9026
Version: 1.2.0.9027
Authors@R: c(
person("Peter", "Teunis", , "[email protected]", role = c("aut", "cph"),
comment = "Author of the method and original code."),
Expand Down
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,8 @@
## Internal changes
* Updated documentation to align with previous CRAN feedback (#328)

* Updated tests to use internal testing datasets instead of external links (#328)

* Updated `test-coverage.yml` GHA action to current `r-lib` standard (#330)

* Change default pipe setting (#312)
Expand Down
223 changes: 120 additions & 103 deletions tests/testthat/_snaps/as_curve_params.md

Large diffs are not rendered by default.

69 changes: 21 additions & 48 deletions tests/testthat/_snaps/as_noise_params.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,55 +3,28 @@
Code
test_data
Output
# A tibble: 16 x 7
antigen_iso Country y.low eps nu y.high Lab
<chr> <fct> <dbl> <dbl> <dbl> <dbl> <fct>
1 HlyE_IgA Bangladesh 0.376 0.280 2.60 5000000 CHRF
2 HlyE_IgA Ghana 0.179 0.240 2.60 5000000 MGH
3 HlyE_IgA Nepal 0.853 0.238 2.60 5000000 DH
4 HlyE_IgA Pakistan 0.508 0.279 2.60 5000000 AKU
5 HlyE_IgG Bangladesh 0.787 0.306 2.36 5000000 CHRF
6 HlyE_IgG Ghana 0.645 0.164 2.36 5000000 MGH
7 HlyE_IgG Nepal 1.89 0.128 2.36 5000000 DH
8 HlyE_IgG Pakistan 1.59 0.146 2.36 5000000 AKU
9 LPS_IgA Bangladesh 0.660 0.299 2.14 5000000 CHRF
10 LPS_IgA Ghana 0.861 0.163 2.14 5000000 MGH
11 LPS_IgA Nepal 1.79 0.115 2.14 5000000 DH
12 LPS_IgA Pakistan 5.13 0.246 2.14 5000000 AKU
13 LPS_IgG Bangladesh 0.992 0.298 3.24 5000000 CHRF
14 LPS_IgG Ghana 0.885 0.195 3.24 5000000 MGH
15 LPS_IgG Nepal 0.647 0.179 3.24 5000000 DH
16 LPS_IgG Pakistan 4.84 0.273 3.24 5000000 AKU
# A tibble: 4 x 7
antigen_iso Country y.low eps nu y.high Lab
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 HlyE_IgA Pakistan 0.508 0.279 2.60 5000000 AKU
2 HlyE_IgG Pakistan 1.59 0.146 2.36 5000000 AKU
3 LPS_IgA Pakistan 5.13 0.246 2.14 5000000 AKU
4 LPS_IgG Pakistan 4.84 0.273 3.24 5000000 AKU

---

WAoAAAACAAQEAQACAwAAAAMTAAAABwAAABAAAAAQAAQACQAAAAhIbHlFX0lnQQAEAAkAAAAI
SGx5RV9JZ0EABAAJAAAACEhseUVfSWdBAAQACQAAAAhIbHlFX0lnQQAEAAkAAAAISGx5RV9J
Z0cABAAJAAAACEhseUVfSWdHAAQACQAAAAhIbHlFX0lnRwAEAAkAAAAISGx5RV9JZ0cABAAJ
AAAAB0xQU19JZ0EABAAJAAAAB0xQU19JZ0EABAAJAAAAB0xQU19JZ0EABAAJAAAAB0xQU19J
Z0EABAAJAAAAB0xQU19JZ0cABAAJAAAAB0xQU19JZ0cABAAJAAAAB0xQU19JZ0cABAAJAAAA
B0xQU19JZ0cAAAMNAAAAEAAAAAEAAAACAAAAAwAAAAQAAAABAAAAAgAAAAMAAAAEAAAAAQAA
AAIAAAADAAAABAAAAAEAAAACAAAAAwAAAAQAAAQCAAAAAQAEAAkAAAAGbGV2ZWxzAAAAEAAA
AAQABAAJAAAACkJhbmdsYWRlc2gABAAJAAAABUdoYW5hAAQACQAAAAVOZXBhbAAEAAkAAAAI
UGFraXN0YW4AAAQCAAAAAQAEAAkAAAAFY2xhc3MAAAAQAAAAAQAEAAkAAAAGZmFjdG9yAAAA
/gAAAA4AAAAQP9gUhDQ1RGM/xvCKmUL++z/rSk6UfGgfP+BFPcbXYck/6TE4o6ROQj/ko950
nZRZP/5JGcI3t0A/+YNhwTKHMz/lIQmukLLRP+uL8ltAh0g//LaTVr0DtUAUhFsZVj1OP+++
j4SPPcI/7E67WBZ9rD/kspkzsff5QBNb4G4DLJ8AAAAOAAAAED/R87Wq5+K3P86rhUPfGHg/
zoJeQW9aLT/R4GSyElOYP9OWzBODLmI/xPtMdrkKcj/AaTWyrixoP8KkV93KZo8/0x2pZndK
kz/E2s3uS1HXP71nYcIHjvo/z3PLL4YC+D/TD0QauoAUP8kEu44Oiq0/xuWdcUgfXD/RdF8Z
kNbEAAAADgAAABBABMPOAA0c6EAEw84ADRzoQATDzgANHOhABMPOAA0c6EAC4WKiymBYQALh
YqLKYFhAAuFiospgWEAC4WKiymBYQAEbfuAKClBAARt+4AoKUEABG37gCgpQQAEbfuAKClBA
CeX2bXB1/kAJ5fZtcHX+QAnl9m1wdf5ACeX2bXB1/gAAAA4AAAAQQVMS0AAAAABBUxLQAAAA
AEFTEtAAAAAAQVMS0AAAAABBUxLQAAAAAEFTEtAAAAAAQVMS0AAAAABBUxLQAAAAAEFTEtAA
AAAAQVMS0AAAAABBUxLQAAAAAEFTEtAAAAAAQVMS0AAAAABBUxLQAAAAAEFTEtAAAAAAQVMS
0AAAAAAAAAMNAAAAEAAAAAEAAAACAAAAAwAAAAQAAAABAAAAAgAAAAMAAAAEAAAAAQAAAAIA
AAADAAAABAAAAAEAAAACAAAAAwAAAAQAAAQCAAAB/wAAABAAAAAEAAQACQAAAARDSFJGAAQA
CQAAAANNR0gABAAJAAAAAkRIAAQACQAAAANBS1UAAAQCAAAC/wAAABAAAAABAAQACQAAAAZm
YWN0b3IAAAD+AAAEAgAAAv8AAAAQAAAABAAEAAkAAAAMbm9pc2VfcGFyYW1zAAQACQAAAAZ0
YmxfZGYABAAJAAAAA3RibAAEAAkAAAAKZGF0YS5mcmFtZQAABAIAAAABAAQACQAAAAlyb3cu
bmFtZXMAAAANAAAAAoAAAAD////wAAAEAgAAAAEABAAJAAAABW5hbWVzAAAAEAAAAAcABAAJ
AAAAC2FudGlnZW5faXNvAAQACQAAAAdDb3VudHJ5AAQACQAAAAV5LmxvdwAEAAkAAAADZXBz
AAQACQAAAAJudQAEAAkAAAAGeS5oaWdoAAQACQAAAANMYWIAAAQCAAAAAQAEAAkAAAAMYW50
aWdlbl9pc29zAAAAEAAAAAQABAAJAAAACEhseUVfSWdBAAQACQAAAAhIbHlFX0lnRwAEAAkA
AAAHTFBTX0lnQQAEAAkAAAAHTFBTX0lnRwAAAP4=
WAoAAAACAAQEAQACAwAAAAMTAAAABwAAABAAAAAEAAQACQAAAAhIbHlFX0lnQQAEAAkAAAAI
SGx5RV9JZ0cABAAJAAAAB0xQU19JZ0EABAAJAAAAB0xQU19JZ0cAAAAQAAAABAAEAAkAAAAI
UGFraXN0YW4ABAAJAAAACFBha2lzdGFuAAQACQAAAAhQYWtpc3RhbgAEAAkAAAAIUGFraXN0
YW4AAAAOAAAABD/gRT3G12HJP/mDYcEyhzNAFIRbGVY9TkATW+BuAyyfAAAADgAAAAQ/0eBk
shJTmD/CpFfdymaPP89zyy+GAvg/0XRfGZDWxQAAAA4AAAAEQATDzgANHPJAAuFiospgWkAB
G37gCgpTQAnl9m1wdf4AAAAOAAAABEFTEtAAAAAAQVMS0AAAAABBUxLQAAAAAEFTEtAAAAAA
AAAAEAAAAAQABAAJAAAAA0FLVQAEAAkAAAADQUtVAAQACQAAAANBS1UABAAJAAAAA0FLVQAA
BAIAAAABAAQACQAAAAVjbGFzcwAAABAAAAAEAAQACQAAAAxub2lzZV9wYXJhbXMABAAJAAAA
BnRibF9kZgAEAAkAAAADdGJsAAQACQAAAApkYXRhLmZyYW1lAAAEAgAAAAEABAAJAAAACXJv
dy5uYW1lcwAAAA0AAAACgAAAAP////wAAAQCAAAAAQAEAAkAAAAFbmFtZXMAAAAQAAAABwAE
AAkAAAALYW50aWdlbl9pc28ABAAJAAAAB0NvdW50cnkABAAJAAAABXkubG93AAQACQAAAANl
cHMABAAJAAAAAm51AAQACQAAAAZ5LmhpZ2gABAAJAAAAA0xhYgAABAIAAAABAAQACQAAAAxh
bnRpZ2VuX2lzb3MAAAAQAAAABAAEAAkAAAAISGx5RV9JZ0EABAAJAAAACEhseUVfSWdHAAQA
CQAAAAdMUFNfSWdBAAQACQAAAAdMUFNfSWdHAAAA/g==

Loading
Loading