Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix crossspectrum all default #762

Merged
merged 5 commits into from
Oct 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/changes/762.bugfix.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Crossspectrum had "real" as default value. This meant that, for example, lags could not be calculated. Now the default value is "all", as it should be.
2 changes: 1 addition & 1 deletion stingray/crossspectrum.py
Original file line number Diff line number Diff line change
Expand Up @@ -547,7 +547,7 @@ def __init__(
gti=None,
lc1=None,
lc2=None,
power_type="real",
power_type="all",
dt=None,
fullspec=False,
skip_checks=False,
Expand Down
10 changes: 5 additions & 5 deletions stingray/modeling/gpmodeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,7 @@
tfp_available = False


__all__ = ["get_kernel", "get_mean", "get_prior",
"get_log_likelihood", "GPResult", "get_gp_params"]
__all__ = ["get_kernel", "get_mean", "get_prior", "get_log_likelihood", "GPResult", "get_gp_params"]


def get_kernel(kernel_type, kernel_params):
Expand Down Expand Up @@ -575,8 +574,7 @@
self.counts = lc.counts
self.result = None

def sample(self, prior_model=None, likelihood_model=None, max_samples=1e4,
num_live_points=500):
def sample(self, prior_model=None, likelihood_model=None, max_samples=1e4, num_live_points=500):
"""
Makes a Jaxns nested sampler over the Gaussian Process, given the
prior and likelihood model
Expand Down Expand Up @@ -619,7 +617,9 @@
nsmodel = Model(prior_model=self.prior_model, log_likelihood=self.log_likelihood_model)
nsmodel.sanity_check(random.PRNGKey(10), S=100)

self.exact_ns = ExactNestedSampler(nsmodel, num_live_points=num_live_points, max_samples=max_samples)
self.exact_ns = ExactNestedSampler(

Check warning on line 620 in stingray/modeling/gpmodeling.py

View check run for this annotation

Codecov / codecov/patch

stingray/modeling/gpmodeling.py#L620

Added line #L620 was not covered by tests
nsmodel, num_live_points=num_live_points, max_samples=max_samples
)

termination_reason, state = self.exact_ns(
random.PRNGKey(42), term_cond=TerminationCondition(live_evidence_frac=1e-4)
Expand Down
6 changes: 3 additions & 3 deletions stingray/simulator/tests/test_simulator.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ def calculate_lag(self, lc, h, delay):

lc1 = Lightcurve(time, s)
lc2 = Lightcurve(time, output)
cross = Crossspectrum(lc1, lc2)
cross = Crossspectrum(lc2, lc1)
cross = cross.rebin(0.0075)

return np.angle(cross.power) / (2 * np.pi * cross.freq)
Expand Down Expand Up @@ -559,7 +559,7 @@ def test_position_varying_channels(self):
outputs.append(lc2)

with pytest.warns(UserWarning, match="Your lightcurves have different statistics"):
cross = [Crossspectrum(lc, lc2).rebin(0.0075) for lc2 in outputs]
cross = [Crossspectrum(lc2, lc).rebin(0.0075) for lc2 in outputs]
lags = [np.angle(c.power) / (2 * np.pi * c.freq) for c in cross]

v_cutoffs = [1.0 / (2.0 * 5), 1.0 / (2.0 * 10)]
Expand Down Expand Up @@ -588,7 +588,7 @@ def test_intensity_varying_channels(self):
outputs.append(lc2)

with pytest.warns(UserWarning, match="Your lightcurves have different statistics"):
cross = [Crossspectrum(lc, lc2).rebin(0.0075) for lc2 in outputs]
cross = [Crossspectrum(lc2, lc).rebin(0.0075) for lc2 in outputs]
lags = [np.angle(c.power) / (2 * np.pi * c.freq) for c in cross]

v_cutoff = 1.0 / (2.0 * 5)
Expand Down
8 changes: 4 additions & 4 deletions stingray/tests/test_crossspectrum.py
Original file line number Diff line number Diff line change
Expand Up @@ -869,7 +869,7 @@ def test_classical_significances_fails_in_rms(self):
@pytest.mark.slow
def test_classical_significances_threshold(self):
with pytest.warns(UserWarning) as record:
cs = Crossspectrum(self.lc1, self.lc2, norm="leahy")
cs = Crossspectrum(self.lc1, self.lc2, norm="leahy", power_type="real")

# change the powers so that just one exceeds the threshold
cs.power = np.zeros_like(cs.power) + 2.0
Expand All @@ -886,7 +886,7 @@ def test_classical_significances_threshold(self):
@pytest.mark.slow
def test_classical_significances_trial_correction(self):
with pytest.warns(UserWarning) as record:
cs = Crossspectrum(self.lc1, self.lc2, norm="leahy")
cs = Crossspectrum(self.lc1, self.lc2, norm="leahy", power_type="real")
# change the powers so that just one exceeds the threshold
cs.power = np.zeros_like(cs.power) + 2.0
index = 1
Expand All @@ -897,15 +897,15 @@ def test_classical_significances_trial_correction(self):

def test_classical_significances_with_logbinned_psd(self):
with pytest.warns(UserWarning) as record:
cs = Crossspectrum(self.lc1, self.lc2, norm="leahy")
cs = Crossspectrum(self.lc1, self.lc2, norm="leahy", power_type="real")
cs_log = cs.rebin_log()
pval = cs_log.classical_significances(threshold=1.1, trial_correction=False)

assert len(pval[0]) == len(cs_log.power)

@pytest.mark.slow
def test_pvals_is_numpy_array(self):
cs = Crossspectrum(self.lc1, self.lc2, norm="leahy")
cs = Crossspectrum(self.lc1, self.lc2, norm="leahy", power_type="real")
# change the powers so that just one exceeds the threshold
cs.power = np.zeros_like(cs.power) + 2.0

Expand Down