Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Moving pad locations to field constants. Updated stolen boosts logic. #212

Merged
merged 6 commits into from
Nov 12, 2019
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 57 additions & 4 deletions carball/analysis/constants/field_constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
class FieldType(Enum):
STANDARD = 1


STANDARD_FIELD_LENGTH_HALF = 5120
STANDARD_FIELD_WIDTH_HALF = 4096
STANDARD_GOAL_WIDTH_HALF = 893
Expand All @@ -24,7 +25,6 @@ class FieldType(Enum):


class FieldConstants:

field_type = FieldType.STANDARD

corner = np.array([STANDARD_FIELD_WIDTH_HALF - STANDARD_GOAL_WIDTH_HALF,
Expand All @@ -43,6 +43,59 @@ def __init__(self, field_type=FieldType.STANDARD):
return: Boolean series that can be used to index the original data_frame to sum deltas with.
"""

# The first two values are X,Y. The last value is (RLBot_label +1) and multiplied by 10 if its a bigboost.
# Bigboosts are *10 so that all big boost values are larger than all small boost values, for easy querying.
# If nobody needs these to be RLBot labels, this can be simplified.
def get_big_pads(self, field_type=None):
if field_type is None:
field_type = self.field_type
if field_type == FieldType.STANDARD:
return np.array([
(3072, -4096, 50),
(-3072, -4096, 40),
(3584, 0, 190),
(-3584, 0, 160),
(3072, 4096, 300),
(-3072, 4096, 310)])
else:
raise NotImplementedError

def get_small_pads(self, field_type=None):
if field_type is None:
field_type = self.field_type
if field_type == FieldType.STANDARD:
return np.array([
(0.0, -4240.0, 1),
(-1792.0, -4184.0, 2),
(1792.0, -4184.0, 3),
(- 940.0, -3308.0, 6),
(940.0, -3308.0, 7),
(0.0, -2816.0, 8),
(-3584.0, -2484.0, 9),
(3584.0, -2484.0, 10),
(-1788.0, -2300.0, 11),
(1788.0, -2300.0, 12),
(-2048.0, -1036.0, 13),
(0.0, -1024.0, 14),
(2048.0, -1036.0, 15),
(-1024.0, 0.0, 17),
(1024.0, 0.0, 18),
(-2048.0, 1036.0, 20),
(0.0, 1024.0, 21),
(2048.0, 1036.0, 22),
(-1788.0, 2300.0, 23),
(1788.0, 2300.0, 24),
(-3584.0, 2484.0, 25),
(3584.0, 2484.0, 26),
(0.0, 2816.0, 27),
(- 940.0, 3310.0, 28),
(940.0, 3308.0, 29),
(-1792.0, 4184.0, 32),
(1792.0, 4184.0, 33),
(0.0, 4240.0, 34)])
else:
raise NotImplementedError

def get_neutral_zone(self, player_data_frame, **kwargs):
return self.abs(player_data_frame.pos_y) < NEUTRAL_ZONE

Expand All @@ -68,7 +121,7 @@ def get_height_0_ball(self, player_data_frame, **kwargs):
return player_data_frame.pos_z < HEIGHT_0_BALL_LIM

def get_height_1(self, player_data_frame, **kwargs):
return (HEIGHT_0_LIM < player_data_frame.pos_z) & (player_data_frame.pos_z < HEIGHT_1_LIM)\
return (HEIGHT_0_LIM < player_data_frame.pos_z) & (player_data_frame.pos_z < HEIGHT_1_LIM) \
& (player_data_frame.pos_x.abs() < self.on_wall[0]) & (player_data_frame.pos_y.abs() < self.on_wall[1])

def get_height_2(self, player_data_frame, **kwargs):
Expand All @@ -94,9 +147,9 @@ def get_on_wall(self, player_data_frame, **kwargs):

def get_corner_time(self, player_data_frame, **kwargs):
return (((player_data_frame.pos_x >= self.corner[0]) |
(player_data_frame.pos_x <= -self.corner[0])) &
(player_data_frame.pos_x <= -self.corner[0])) &
((player_data_frame.pos_y >= self.corner[1]) |
(player_data_frame.pos_y <= - self.corner[1])))
(player_data_frame.pos_y <= - self.corner[1])))

def abs(self, value):
if value is pd.DataFrame:
Expand Down
149 changes: 52 additions & 97 deletions carball/analysis/events/boost_pad_detection/pickup_analysis.py
Original file line number Diff line number Diff line change
@@ -1,117 +1,72 @@
import numpy as np
import pandas as pd
from carball.generated.api import game_pb2

# The first two values are X,Y. The last value is (RLBot_label +1) and multiplied by 10 if its a bigboost.
# Bigboosts are *10 so that all big boost values are larger than all small boost values, for easy querying.
# If nobody needs these to be RLBot labels, this can be simplified.
BIG_BOOST_POSITIONS = np.array([
(3072, -4096, 50),
(-3072, -4096, 40),
(3584, 0, 190),
(-3584, 0, 160),
(3072, 4096, 300),
(-3072, 4096, 310)])

SMALL_BOOST_POSITIONS = np.array([
(0.0, -4240.0, 1),
(-1792.0, -4184.0, 2),
(1792.0, -4184.0, 3),
(- 940.0, -3308.0, 6),
(940.0, -3308.0, 7),
(0.0, -2816.0, 8),
(-3584.0, -2484.0, 9),
(3584.0, -2484.0, 10),
(-1788.0, -2300.0, 11),
(1788.0, -2300.0, 12),
(-2048.0, -1036.0, 13),
(0.0, -1024.0, 14),
(2048.0, -1036.0, 15),
(-1024.0, 0.0, 17),
(1024.0, 0.0, 18),
(-2048.0, 1036.0, 20),
(0.0, 1024.0, 21),
(2048.0, 1036.0, 22),
(-1788.0, 2300.0, 23),
(1788.0, 2300.0, 24),
(-3584.0, 2484.0, 25),
(3584.0, 2484.0, 26),
(0.0, 2816.0, 27),
(- 940.0, 3310.0, 28),
(940.0, 3308.0, 29),
(-1792.0, 4184.0, 32),
(1792.0, 4184.0, 33),
(0.0, 4240.0, 34)
])

BIG_BOOST_RADIUS = 208
SMALL_BOOST_RADIUS = 149 # 144 doesn't work for some pickups that are very close to the edge.
BIG_BOOST_HEIGHT = 168
SMALL_BOOST_HEIGHT = 165
# Choosing how many frames to be open to setting a pickup. Back is for when the player is ahead of the server (usually smaller)
LAG_BACK = 6
LAG_FORWARD = 14

BOOST_POSITIONS = np.concatenate((BIG_BOOST_POSITIONS, SMALL_BOOST_POSITIONS))
from carball.analysis.constants.field_constants import FieldConstants


class PickupAnalysis:
field_constants = FieldConstants()
BIG_BOOST_POSITIONS = field_constants.get_big_pads()
SMALL_BOOST_POSITIONS = field_constants.get_small_pads()
BIG_BOOST_RADIUS = 208
SMALL_BOOST_RADIUS = 149 # 144 doesn't work for some pickups that are very close to the edge.
BIG_BOOST_HEIGHT = 168
SMALL_BOOST_HEIGHT = 165
# Choosing how many frames to be open to setting a pickup. Back is for when the player is ahead of the server (usually smaller)
LAG_BACK = 6
LAG_FORWARD = 14

@staticmethod
def add_pickups(proto_game: game_pb2.Game, data_frame: pd.DataFrame):
@classmethod
def add_pickups(cls, proto_game: game_pb2.Game, data_frame: pd.DataFrame):

for player in proto_game.players:
player_vals_df = data_frame[player.name][['pos_x', 'pos_y', 'pos_z', 'boost']].copy()
player_vals_df['boost'] /= 2.55
player_vals_df['boost'] = player_vals_df['boost'].round(5)
player_vals_df = player_vals_df.dropna(axis=0, how='all')
player_vals_df = player_vals_df.fillna(0)
player_vals_df['boost_collect'] = get_boost_collect(player_vals_df)
player_vals_df['boost_collect'] = cls.get_boost_collect(player_vals_df)
data_frame[player.name, 'boost_collect'] = player_vals_df['boost_collect']
return

@staticmethod
def something(proto_game: game_pb2.Game, data_frame: pd.DataFrame):
pass


def get_boost_collect(player_vals_df):
# Get a series with indexes as a subset of the indexes of df, values being pad label picked up.
# Iterate through every pad, label each frame in the path with which boost pad it was in range of.
df = player_vals_df.copy()
path = df.drop(['pos_z', 'boost'], axis=1)
big_labels = np.zeros(len(path))
small_labels = np.zeros(len(path))
# Calculate the distances from each pad. Add label of the pad if distance <= radius
for pad in BIG_BOOST_POSITIONS:
distances = np.sqrt(np.square(path.values - pad[:2]).sum(axis=1, dtype=np.float32))
big_labels += (pad[2] * (distances <= BIG_BOOST_RADIUS))
@classmethod
def get_boost_collect(cls, player_vals_df):
# Get a series with indexes as a subset of the indexes of df, values being pad label picked up.
# Iterate through every pad, label each frame in the path with which boost pad it was in range of.
df = player_vals_df.copy()
path = df.drop(['pos_z', 'boost'], axis=1)
big_labels = np.zeros(len(path))
small_labels = np.zeros(len(path))
# Calculate the distances from each pad. Add label of the pad if distance <= radius
for pad in cls.BIG_BOOST_POSITIONS:
distances = np.sqrt(np.square(path.values - pad[:2]).sum(axis=1, dtype=np.float32))
big_labels += (pad[2] * (distances <= cls.BIG_BOOST_RADIUS))

for pad in SMALL_BOOST_POSITIONS:
distances = np.sqrt(np.square(path.values - pad[:2]).sum(axis=1, dtype=np.float32))
small_labels += (pad[2] * (distances <= SMALL_BOOST_RADIUS))
# Add labels and exclude labels with z too high. Didn't calculate this earlier because its a flat height)
df['pad_in_range'] = 0
df['pad_in_range'] += small_labels
df.loc[df['pos_z'] >= SMALL_BOOST_HEIGHT, 'pad_in_range'] = 0
df['pad_in_range'] += big_labels
df.loc[df['pos_z'] >= BIG_BOOST_HEIGHT, 'pad_in_range'] = 0
# Get the gains in boost per frame
df['gains'] = df['boost'].diff().clip(0)
# Get whether we entered or exited the range of a pad per frame
df['status_change'] = (df['pad_in_range'].diff(1))
df = df.fillna(0)
# Get the index of the frame we most recently entered a pad range, per frame.
df['recent_entry_index'] = df.index
df.loc[df['status_change'] <= 0, 'recent_entry_index'] = 0
df['recent_entry_index'] = df['recent_entry_index'].replace(0, np.nan).fillna(
method='bfill', limit=LAG_BACK).fillna(
method='ffill', limit=LAG_FORWARD)
gains_frames = df.loc[
((df['gains'] > 5) & (df['boost'] != 33.33333)) | ((df['gains'] > 0) & (df['boost'] > 95.0))].copy()
for pad in cls.SMALL_BOOST_POSITIONS:
distances = np.sqrt(np.square(path.values - pad[:2]).sum(axis=1, dtype=np.float32))
small_labels += (pad[2] * (distances <= cls.SMALL_BOOST_RADIUS))
# Add labels and exclude labels with z too high. Didn't calculate this earlier because its a flat height)
df['pad_in_range'] = 0
df['pad_in_range'] += small_labels
df.loc[df['pos_z'] >= cls.SMALL_BOOST_HEIGHT, 'pad_in_range'] = 0
df['pad_in_range'] += big_labels
df.loc[df['pos_z'] >= cls.BIG_BOOST_HEIGHT, 'pad_in_range'] = 0
# Get the gains in boost per frame
df['gains'] = df['boost'].diff().clip(0)
# Get whether we entered or exited the range of a pad per frame
df['status_change'] = (df['pad_in_range'].diff(1))
df = df.fillna(0)
# Get the index of the frame we most recently entered a pad range, per frame.
df['recent_entry_index'] = df.index
df.loc[df['status_change'] <= 0, 'recent_entry_index'] = 0
df['recent_entry_index'] = df['recent_entry_index'].replace(0, np.nan).fillna(
method='bfill', limit=cls.LAG_BACK).fillna(
method='ffill', limit=cls.LAG_FORWARD)
gains_frames = df.loc[
((df['gains'] > 5) & (df['boost'] != 33.33333)) | ((df['gains'] > 0) & (df['boost'] > 95.0))].copy()

gains_indexes = gains_frames['recent_entry_index'].dropna()
gains_indexes = gains_frames['recent_entry_index'].dropna()

pickups = df.loc[gains_indexes]['status_change'].copy()
pickups = pickups.loc[~pickups.index.duplicated(keep='first')]
return pickups
pickups = df.loc[gains_indexes]['status_change'].copy()
pickups = pickups.loc[~pickups.index.duplicated(keep='first')]
return pickups
21 changes: 7 additions & 14 deletions carball/analysis/stats/boost/boost.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,13 +85,14 @@ def get_average_boost_level(player_dataframe: pd.DataFrame) -> np.float64:

@classmethod
def get_num_stolen_boosts(cls, player_dataframe: pd.DataFrame, is_orange):
big_pads_collected = player_dataframe[player_dataframe.boost_collect == True]
if is_orange == 1:
boost_collected_in_opposing_third = big_pads_collected[cls.field_constants.get_third_0(big_pads_collected)]
big = cls.field_constants.get_big_pads()
# Get big pads below or above 0 depending on team
if is_orange:
opponent_pad_labels = big[big[:, 1] < 0][:, 2]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you add a bit more detailed explanation of how this logic works?

It is a bit hard to read

else:
boost_collected_in_opposing_third = big_pads_collected[cls.field_constants.get_third_2(big_pads_collected)]

return len(boost_collected_in_opposing_third.index)
opponent_pad_labels = big[big[:, 1] > 0][:, 2]
stolen = player_dataframe.boost_collect.isin(opponent_pad_labels).sum()
return stolen

@staticmethod
def get_player_boost_usage_max_speed(player_dataframe: pd.DataFrame) -> np.float64:
Expand Down Expand Up @@ -135,11 +136,3 @@ def get_player_boost_collection(player_dataframe: pd.DataFrame) -> Dict[str, int
except (AttributeError, KeyError):
return {}
return ret

@staticmethod
def get_player_boost_waste(usage: np.float64, collection: Dict[str, int]) -> float:
try:
total_collected = collection['big'] * 100 + collection['small'] * 12
return total_collected - usage
except KeyError:
return 0