Skip to content

Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures!!

Notifications You must be signed in to change notification settings

Sagar19RaoRane/deep-learning-drizzle

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 

Repository files navigation

🎉 Deep Learning Drizzle 🎊 🎈


Contents


  • Deep Learning (Deep Neural Networks) ⤵️

  • Machine Learning Fundamentals ⤵️

  • Optimization for Machine Learning ⤵️

  • General Machine Learning ⤵️

  • Reinforcement Learning ⤵️

  • Probabilistic Graphical Models ⤵️

  • Natural Language Processing ⤵️

  • Modern Computer Vision ⤵️

  • Boot Camps or Summer Schools ⤵️


🎉 Deep Learning 🎊 🎈


S.No Course Name University/Instructor(s) Course WebPage Lecture Videos Year
1. Neural Networks for Machine Learning Geoffrey Hinton, University of Toronto Lecture-Slides CSC321-tijmen YouTube-Lectures mirror 2012 2014
2. Neural Networks Demystified Stephen Welch, Welch Labs Supplementary Code YouTube-Lectures 2014
3. Deep Learning at Oxford Nando de Freitas, Oxford University Oxford-ML YouTube-Lectures 2015
4. CS231n: CNNs for Visual Recognition Andrej Karpathy, Stanford University CS231n None 2015
5. CS231n: CNNs for Visual Recognition Andrej Karpathy, Stanford University CS231n YouTube-Lectures 2016
6. CS231n: CNNs for Visual Recognition Justin Johnson, Stanford University CS231n YouTube-Lectures 2017
7. CS224d: Deep Learning for NLP Richard Socher, Stanford University CS224d YouTube-Lectures 2015
8. CS224d: Deep Learning for NLP Richard Socher, Stanford University CS224d YouTube-Lectures 2016
9. CS224n: NLP with Deep Learning Richard Socher, Stanford University CS224n YouTube-Lectures 2017
10. Neural Networks Hugo Larochelle, Université de Sherbrooke Neural-Networks YouTube-Lectures 2016
11. Deep Learning Andrew Ng, Stanford University CS230 None 2018
12. Bay Area Deep Learning Many legends, Stanford None YouTube-Lectures 2016
13. UvA Deep Learning Efstratios Gavves, University of Amsterdam(UvA) UvA-DLC Lecture-Videos 2018
14. Advanced Deep Learning and Reinforcement Learning Many legends, DeepMind None YouTube-Lectures 2018
15. Deep Learning Francois Fleuret, EPFL EE-59 None 2019
16. Deep Learning Francois Fleuret, EPFL EE-59 Video-Lectures 2018
17. Deep Learning for Perception Dhruv Batra, Virginia Tech ECE-6504 YouTube-Lectures 2015
18. Introduction to Deep Learning Alexander Amini, Harini Suresh, MIT 6.S191 YouTube-Lectures 2018
19. Deep Learning for Self-Driving Cars Lex Fridman, MIT 6.S094 YouTube-Lectures 2017-2018
20. MIT Deep Learning Many Researchers, Lex Fridman, MIT 6.S094, 6.S091, 6.S093 YouTube-Lectures 2019
21. Introduction to Deep Learning Biksha Raj and many others, CMU 11-485/785 YouTube-Lectures S2018
22. Introduction to Deep Learning Biksha Raj and others, CMU 11-485/785 YouTube-Lectures Recitation-Inclusive F2018
23. Deep Learning Specialization Andrew Ng, Stanford DeepLearning.AI YouTube-Lectures 2017-2018
24. Deep Learning Ali Ghodsi, University of Waterloo STAT-946 YouTube-Lectures F2015
25. Deep Learning Ali Ghodsi, University of Waterloo STAT-946 YouTube-Lectures F2017
26. Deep Learning Mitesh Khapra, IIT-Madras CS7015 YouTube-Lectures 2018
-2. Deep Learning Book companion videos Ian Goodfellow and others DL-book slides YouTube-Lectures 2017
-1. Neural Networks Grant Sanderson None YouTube-Lectures 2017-2018

Go to Contents ⤴️


💘 Machine Learning Fundamentals 🌀 💥


S.No Course Name University/Instructor(s) Course Webpage Video Lectures Year
1. Linear Algebra Gilbert Strang, MIT 18.06 SC YouTube-Lectures 2011
2. Linear Algebra: An in-depth Introduction Pavel Grinfeld None Part-1
Part-2
Part-3
Part-4
2015- 2017
3. Essence of Linear Algebra Grant Sanderson None YouTube-Lectures 2016
4. Essence of Calculus Grant Sanderson None YouTube-Lectures 2017-2018
5. Mathematics for Machine Learning (Linear Algebra, Calculus) David Dye, Samuel Cooper, and Freddie Page, IC-London MML YouTube-Lectures 2018
6. Machine Learning Fundamentals Sanjoy Dasgupta, UC-San Diego MLF-slides YouTube-Lectures 2018

Go to Contents ⤴️


💘 Optimization for Machine Learning 🌀 💥


S.No Course Name University/Instructor(s) Course Webpage Video Lectures Year
1. Optimization Geoff Gordon & Ryan Tibshirani, CMU 10-725 YouTube-Lectures 2012
2. Convex Optimization Ryan Tibshirani, CMU cvx-opt YouTube-Lectures F2018
3. Convex Optimization Stephen Boyd, Stanford University ee364a YouTube-Lectures 2008

Go to Contents ⤴️


💘 General Machine Learning 🌀 💥


S.No Course Name University/Instructor(s) Course Webpage Video Lectures Year
1. CS229: Machine Learning Andrew Ng, Stanford University CS229-old
CS229-new
YouTube-Lectures 2007
2. Machine Learning and Data Mining Nando de Freitas, University of British Columbia CPSC-340 YouTube-Lectures 2012
3. Learning from Data Yaser Abu-Mostafa, CalTech CS156 YouTube-Lectures 2012
4. Machine Learning Rudolph Triebel, TUM Machine Learning YouTube-Lectures 2013
5. Introduction to Machine Learning Katie Malone, Sebastian Thrun, Udacity ML-Udacity YouTube-Lectures 2015
6. Introduction to Machine Learning Dhruv Batra, Virginia Tech ECE-5984 YouTube-Lectures 2015
7. Statistical Learning - Classification Ali Ghodsi, University of Waterloo STAT-441 YouTube-Lectures 2015
8 Machine Learning Theory Shai Ben-David, University of Waterloo None YouTube-Lectures 2015
9. Introduction to Machine Learning Alex Smola, CMU 10-701 YouTube-Lectures S2015
10. ML: Supervised Learning Michael Littman, Charles Isbell, Pushkar Kolhe, GaTech ML-Udacity YouTube-Lectures 2015
11. ML: Unsupervised Learning Michael Littman, Charles Isbell, Pushkar Kolhe, GaTech ML-Udacity YouTube-Lectures 2015
12. Statistical Machine Learning Larry Wasserman, CMU None YouTube-Lectures S2016
13. Statistical Learning - Classification Ali Ghodsi, University of Waterloo None YouTube-Lectures 2017
14. Machine Learning Andrew Ng, Stanford University Coursera-ML YouTube-Lectures 2017
15. Statistical Machine Learning Ryan Tibshirani, Larry Wasserman, CMU 10-702 YouTube-Lectures S2017
16. Machine Learning for Intelligent Systems Kilian Weinberger, Cornell University CS4780 YouTube-Lectures F2018
17. Statistical Learning Theory and Applications Tomaso Poggio, Lorenzo Rosasco, Sasha Rakhlin 9.520/6.860 YouTube-Lectures F2018
18. Machine Learning and Data Mining Mike Gelbart, University of British Columbia CPSC-340 YouTube-Lectures 2018
19. Foundations of Machine Learning David Rosenberg, Bloomberg FOML YouTube-Lectures 2018

Go to Contents ⤴️


🎈 Reinforcement Learning ♨️ 🎮


S.No Course Name University/Instructor(s) Course Webpage Video Lectures Year
1. Approximate Dynamic Programming Dimitri P. Bertsekas, MIT Lecture-Slides YouTube-Lectures 2014
2. Introduction to Reinforcement Learning David Silver, DeepMind UCL-RL YouTube-Lectures 2015
3. Reinforcement Learning Charles Isbell, Chris Pryby, GaTech; Michael Littman, Brown RL-Udacity YouTube-Lectures 2015
4. Reinforcement Learning Balaraman Ravindran, IIT Madras RL-IITM YouTube-Lectures 2016
5. Deep Reinforcement Learning Sergey Levine, UC Berkeley CS-294 YouTube-Lectures S2017
6. Deep Reinforcement Learning Sergey Levine, UC Berkeley CS-294 YouTube-Lectures F2017
7. Deep RL Bootcamp Many legends, UC Berkeley Deep-RL YouTube-Lectures 2017
8. Deep Reinforcement Learning Sergey Levine, UC Berkeley CS-294-112 YouTube-Lectures 2018
9. Reinforcement Learning Pascal Poupart, University of Waterloo CS-885 YouTube-Lectures 2018
10. Deep Reinforcement Learning and Control Katerina Fragkiadaki and Tom Mitchell, CMU 10-703 YouTube-Lectures 2018

Go to Contents ⤴️


📢 Probabilistic Graphical Models - (Foundation for Graph Neural Networks)


S.No Course Name University/Instructor(s) Course WebPage Lecture Videos Year
1. Probabilistic Graphical Models Many Legends, MPI-IS MLSS-Tuebingen YouTube-Lectures 2013
2. Probabilistic Modeling and Machine Learning Zoubin Ghahramani, University of Cambridge WUST-Wroclaw YouTube-Lectures 2013
3. Probabilistic Graphical Models Eric Xing, CMU 10-708 YouTube-Lectures 2014
4. Probabilistic Graphical Models Nicholas Zabaras, University of Notre Dame PGM YouTube-Lectures 2018

Go to Contents ⤴️


🌺 Natural Language Processing - (More Applied) 🌸 💖


S.No Course Name University/Instructor(s) Course WebPage Lecture Videos Year
1. Deep Learning for Natural Language Processing Nils Reimers, TU Darmstadt DL4NLP YouTube-Lectures 2015-2017
2. Deep Learning for Natural Language Processing Many Legends, DeepMind-Oxford DL-NLP YouTube-Lectures 2017
3. Neural Networks for Natural Language Processing Graham Neubig, CMU NN4NLP Code YouTube-Lectures 2017
4. Neural Networks for Natural Language Processing Graham Neubig, CMU NN4-NLP YouTube-Lectures 2018
5. Neural Networks for Natural Language Processing Graham Neubig, CMU NN4NLP YouTube-Lectures 2019

Go to Contents ⤴️


🔥 Modern Computer Vision 📸 🎥


S.No Course Name University/Instructor(s) Course WebPage Lecture Videos Year
1. Computer Vision - (classical) Mubarak Shah, UCF CAP-5415 YouTube-Lectures 2012
2. Computer Vision - (classical) Mubarak Shah, UCF CAP-5415 YouTube-Lectures 2014
3. Introduction to Computer Vision (foundation) Aaron Bobick, Irfan Essa, Arpan Chakraborty CV-Udacity YouTube-Lectures 2016
4. Convolutional Neural Networks Andrew Ng, Stanford University DeepLearning.AI YouTube-Lectures 2017
5. Variational Methods for Computer Vision Daniel Cremers, TUM VMCV YouTube-Lectures 2017
6. Deep Learning for Visual Computing Debdoot Sheet, IIT-Kgp Nptel Notebooks YouTube-Lectures 2018
7. Autonomous Navigation for Flying Robots Juergen Sturm, TUM Autonavx YouTube-Lectures 2014
8. SLAM - Mobile Robotics Cyrill Stachniss, Universitaet Freiburg RobotMapping YouTube-Lectures 2014

Go to Contents ⤴️


🌟 Boot Camps or Summer Schools 🍁


S.No Course Name University/Instructor(s) Course WebPage Lecture Videos Year
1. Optimization for Machine Learning S V N Vishwanathan, Purdue University None YouTube-Lectures 2011
2. Deep Learning, Feature Learning Many legends, IPAM UCLA GSS-2012 YouTube-Lectures 2012
3. Big Data Boot Camp Many Legends, Simons Institute Big Data YouTube-Lectures 2013
4 Mathematics of Signal Processing Many Legends, Hausdorff Institute for Mathematics SigProc YouTube-Lectures 2016
5. Microsoft Research - Machine Learning Course S V N Vishwanathan and Prateek Jain MS-Research None YouTube-Lectures 2016
6. Deep Learning Summer School Many Legends, Université de Montréal DL-SS-16 YouTube-Lectures 2016
7. Representation Learning Many Legends, Simons Institute RepLearn YouTube-Lectures 2017
8. Foundations of Machine Learning Many Legends, Simons Institute ML-BootCamp YouTube-Lectures 2017
9. Optimization, Statistics, and Uncertainty Many Legends, Simons Institute Optim-Stats YouTube-Lectures 2017
10. Deep Learning: Theory, Algorithms, and Applications Many Legends, TU-Berlin DL: TAA YouTube-Lectures 2017
11. Foundations of Data Science Many Legends, Simons Institute DS-BootCamp YouTube-Lectures 2018
12. Deep|Bayes Many Legends, HSE Moscow DeepBayes.ru YouTube-Lectures 2018
13. New Deep Learning Techniques Many Legends, IPAM UCLA IPAM-Workshop YouTube-Lectures 2018

Go to Contents ⤴️


To-Do 🏃


⬜ Optimization courses which form the foundation for ML, DL, RL

⬜ Computer Vision courses which are DL & ML heavy

⬜ NLP courses which are DL, RL, & ML heavy

⬜ Speech recognition courses which are DL heavy

⬜ Courses on Graph Neural Networks

⬜ Section on DL/RL/ML Summer School Lectures


Go to Contents ⤴️


Contributions 🙏

If you find a course that fits in any of the above categories (i.e. DL, ML, RL, CV, NLP), and the course has lecture videos (with slides - optional), then please raise an issue or send a PR by updating the course according to the above format.

Danke Sehr!


💝 🎓 🎓 🎓 🎓 🎓 🎓 🎓 🎓 🎓🎓 💝


About

Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures!!

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published