-
Deep Learning (Deep Neural Networks)
⤵️ -
Machine Learning Fundamentals
⤵️ -
Optimization for Machine Learning
⤵️ -
General Machine Learning
⤵️ -
Reinforcement Learning
⤵️ -
Probabilistic Graphical Models
⤵️ -
Natural Language Processing
⤵️ -
Modern Computer Vision
⤵️ -
Boot Camps or Summer Schools
⤵️
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Neural Networks for Machine Learning | Geoffrey Hinton, University of Toronto | Lecture-Slides CSC321-tijmen | YouTube-Lectures mirror | 2012 2014 |
2. | Neural Networks Demystified | Stephen Welch, Welch Labs | Supplementary Code | YouTube-Lectures | 2014 |
3. | Deep Learning at Oxford | Nando de Freitas, Oxford University | Oxford-ML | YouTube-Lectures | 2015 |
4. | CS231n: CNNs for Visual Recognition | Andrej Karpathy, Stanford University | CS231n | None |
2015 |
5. | CS231n: CNNs for Visual Recognition | Andrej Karpathy, Stanford University | CS231n | YouTube-Lectures | 2016 |
6. | CS231n: CNNs for Visual Recognition | Justin Johnson, Stanford University | CS231n | YouTube-Lectures | 2017 |
7. | CS224d: Deep Learning for NLP | Richard Socher, Stanford University | CS224d | YouTube-Lectures | 2015 |
8. | CS224d: Deep Learning for NLP | Richard Socher, Stanford University | CS224d | YouTube-Lectures | 2016 |
9. | CS224n: NLP with Deep Learning | Richard Socher, Stanford University | CS224n | YouTube-Lectures | 2017 |
10. | Neural Networks | Hugo Larochelle, Université de Sherbrooke | Neural-Networks | YouTube-Lectures | 2016 |
11. | Deep Learning | Andrew Ng, Stanford University | CS230 | None |
2018 |
12. | Bay Area Deep Learning | Many legends, Stanford | None |
YouTube-Lectures | 2016 |
13. | UvA Deep Learning | Efstratios Gavves, University of Amsterdam(UvA) | UvA-DLC | Lecture-Videos | 2018 |
14. | Advanced Deep Learning and Reinforcement Learning | Many legends, DeepMind | None |
YouTube-Lectures | 2018 |
15. | Deep Learning | Francois Fleuret, EPFL | EE-59 | None |
2019 |
16. | Deep Learning | Francois Fleuret, EPFL | EE-59 | Video-Lectures | 2018 |
17. | Deep Learning for Perception | Dhruv Batra, Virginia Tech | ECE-6504 | YouTube-Lectures | 2015 |
18. | Introduction to Deep Learning | Alexander Amini, Harini Suresh, MIT | 6.S191 | YouTube-Lectures | 2018 |
19. | Deep Learning for Self-Driving Cars | Lex Fridman, MIT | 6.S094 | YouTube-Lectures | 2017-2018 |
20. | MIT Deep Learning | Many Researchers, Lex Fridman, MIT | 6.S094, 6.S091, 6.S093 | YouTube-Lectures | 2019 |
21. | Introduction to Deep Learning | Biksha Raj and many others, CMU | 11-485/785 | YouTube-Lectures | S2018 |
22. | Introduction to Deep Learning | Biksha Raj and others, CMU | 11-485/785 | YouTube-Lectures Recitation-Inclusive | F2018 |
23. | Deep Learning Specialization | Andrew Ng, Stanford | DeepLearning.AI | YouTube-Lectures | 2017-2018 |
24. | Deep Learning | Ali Ghodsi, University of Waterloo | STAT-946 | YouTube-Lectures | F2015 |
25. | Deep Learning | Ali Ghodsi, University of Waterloo | STAT-946 | YouTube-Lectures | F2017 |
26. | Deep Learning | Mitesh Khapra, IIT-Madras | CS7015 | YouTube-Lectures | 2018 |
-2. | Deep Learning Book companion videos | Ian Goodfellow and others | DL-book slides | YouTube-Lectures | 2017 |
-1. | Neural Networks | Grant Sanderson | None |
YouTube-Lectures | 2017-2018 |
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | Linear Algebra | Gilbert Strang, MIT | 18.06 SC | YouTube-Lectures | 2011 |
2. | Linear Algebra: An in-depth Introduction | Pavel Grinfeld | None |
Part-1 Part-2 Part-3 Part-4 |
2015- 2017 |
3. | Essence of Linear Algebra | Grant Sanderson | None |
YouTube-Lectures | 2016 |
4. | Essence of Calculus | Grant Sanderson | None |
YouTube-Lectures | 2017-2018 |
5. | Mathematics for Machine Learning (Linear Algebra, Calculus) | David Dye, Samuel Cooper, and Freddie Page, IC-London | MML | YouTube-Lectures | 2018 |
6. | Machine Learning Fundamentals | Sanjoy Dasgupta, UC-San Diego | MLF-slides | YouTube-Lectures | 2018 |
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | Optimization | Geoff Gordon & Ryan Tibshirani, CMU | 10-725 | YouTube-Lectures | 2012 |
2. | Convex Optimization | Ryan Tibshirani, CMU | cvx-opt | YouTube-Lectures | F2018 |
3. | Convex Optimization | Stephen Boyd, Stanford University | ee364a | YouTube-Lectures | 2008 |
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | CS229: Machine Learning | Andrew Ng, Stanford University | CS229-old CS229-new |
YouTube-Lectures | 2007 |
2. | Machine Learning and Data Mining | Nando de Freitas, University of British Columbia | CPSC-340 | YouTube-Lectures | 2012 |
3. | Learning from Data | Yaser Abu-Mostafa, CalTech | CS156 | YouTube-Lectures | 2012 |
4. | Machine Learning | Rudolph Triebel, TUM | Machine Learning | YouTube-Lectures | 2013 |
5. | Introduction to Machine Learning | Katie Malone, Sebastian Thrun, Udacity | ML-Udacity | YouTube-Lectures | 2015 |
6. | Introduction to Machine Learning | Dhruv Batra, Virginia Tech | ECE-5984 | YouTube-Lectures | 2015 |
7. | Statistical Learning - Classification | Ali Ghodsi, University of Waterloo | STAT-441 | YouTube-Lectures | 2015 |
8 | Machine Learning Theory | Shai Ben-David, University of Waterloo | None |
YouTube-Lectures | 2015 |
9. | Introduction to Machine Learning | Alex Smola, CMU | 10-701 | YouTube-Lectures | S2015 |
10. | ML: Supervised Learning | Michael Littman, Charles Isbell, Pushkar Kolhe, GaTech | ML-Udacity | YouTube-Lectures | 2015 |
11. | ML: Unsupervised Learning | Michael Littman, Charles Isbell, Pushkar Kolhe, GaTech | ML-Udacity | YouTube-Lectures | 2015 |
12. | Statistical Machine Learning | Larry Wasserman, CMU | None |
YouTube-Lectures | S2016 |
13. | Statistical Learning - Classification | Ali Ghodsi, University of Waterloo | None |
YouTube-Lectures | 2017 |
14. | Machine Learning | Andrew Ng, Stanford University | Coursera-ML | YouTube-Lectures | 2017 |
15. | Statistical Machine Learning | Ryan Tibshirani, Larry Wasserman, CMU | 10-702 | YouTube-Lectures | S2017 |
16. | Machine Learning for Intelligent Systems | Kilian Weinberger, Cornell University | CS4780 | YouTube-Lectures | F2018 |
17. | Statistical Learning Theory and Applications | Tomaso Poggio, Lorenzo Rosasco, Sasha Rakhlin | 9.520/6.860 | YouTube-Lectures | F2018 |
18. | Machine Learning and Data Mining | Mike Gelbart, University of British Columbia | CPSC-340 | YouTube-Lectures | 2018 |
19. | Foundations of Machine Learning | David Rosenberg, Bloomberg | FOML | YouTube-Lectures | 2018 |
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | Approximate Dynamic Programming | Dimitri P. Bertsekas, MIT | Lecture-Slides | YouTube-Lectures | 2014 |
2. | Introduction to Reinforcement Learning | David Silver, DeepMind | UCL-RL | YouTube-Lectures | 2015 |
3. | Reinforcement Learning | Charles Isbell, Chris Pryby, GaTech; Michael Littman, Brown | RL-Udacity | YouTube-Lectures | 2015 |
4. | Reinforcement Learning | Balaraman Ravindran, IIT Madras | RL-IITM | YouTube-Lectures | 2016 |
5. | Deep Reinforcement Learning | Sergey Levine, UC Berkeley | CS-294 | YouTube-Lectures | S2017 |
6. | Deep Reinforcement Learning | Sergey Levine, UC Berkeley | CS-294 | YouTube-Lectures | F2017 |
7. | Deep RL Bootcamp | Many legends, UC Berkeley | Deep-RL | YouTube-Lectures | 2017 |
8. | Deep Reinforcement Learning | Sergey Levine, UC Berkeley | CS-294-112 | YouTube-Lectures | 2018 |
9. | Reinforcement Learning | Pascal Poupart, University of Waterloo | CS-885 | YouTube-Lectures | 2018 |
10. | Deep Reinforcement Learning and Control | Katerina Fragkiadaki and Tom Mitchell, CMU | 10-703 | YouTube-Lectures | 2018 |
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Probabilistic Graphical Models | Many Legends, MPI-IS | MLSS-Tuebingen | YouTube-Lectures | 2013 |
2. | Probabilistic Modeling and Machine Learning | Zoubin Ghahramani, University of Cambridge | WUST-Wroclaw | YouTube-Lectures | 2013 |
3. | Probabilistic Graphical Models | Eric Xing, CMU | 10-708 | YouTube-Lectures | 2014 |
4. | Probabilistic Graphical Models | Nicholas Zabaras, University of Notre Dame | PGM | YouTube-Lectures | 2018 |
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Deep Learning for Natural Language Processing | Nils Reimers, TU Darmstadt | DL4NLP | YouTube-Lectures | 2015-2017 |
2. | Deep Learning for Natural Language Processing | Many Legends, DeepMind-Oxford | DL-NLP | YouTube-Lectures | 2017 |
3. | Neural Networks for Natural Language Processing | Graham Neubig, CMU | NN4NLP Code | YouTube-Lectures | 2017 |
4. | Neural Networks for Natural Language Processing | Graham Neubig, CMU | NN4-NLP | YouTube-Lectures | 2018 |
5. | Neural Networks for Natural Language Processing | Graham Neubig, CMU | NN4NLP | YouTube-Lectures | 2019 |
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Computer Vision - (classical) | Mubarak Shah, UCF | CAP-5415 | YouTube-Lectures | 2012 |
2. | Computer Vision - (classical) | Mubarak Shah, UCF | CAP-5415 | YouTube-Lectures | 2014 |
3. | Introduction to Computer Vision (foundation) | Aaron Bobick, Irfan Essa, Arpan Chakraborty | CV-Udacity | YouTube-Lectures | 2016 |
4. | Convolutional Neural Networks | Andrew Ng, Stanford University | DeepLearning.AI | YouTube-Lectures | 2017 |
5. | Variational Methods for Computer Vision | Daniel Cremers, TUM | VMCV | YouTube-Lectures | 2017 |
6. | Deep Learning for Visual Computing | Debdoot Sheet, IIT-Kgp | Nptel Notebooks | YouTube-Lectures | 2018 |
7. | Autonomous Navigation for Flying Robots | Juergen Sturm, TUM | Autonavx | YouTube-Lectures | 2014 |
8. | SLAM - Mobile Robotics | Cyrill Stachniss, Universitaet Freiburg | RobotMapping | YouTube-Lectures | 2014 |
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Optimization for Machine Learning | S V N Vishwanathan, Purdue University | None |
YouTube-Lectures | 2011 |
2. | Deep Learning, Feature Learning | Many legends, IPAM UCLA | GSS-2012 | YouTube-Lectures | 2012 |
3. | Big Data Boot Camp | Many Legends, Simons Institute | Big Data | YouTube-Lectures | 2013 |
4 | Mathematics of Signal Processing | Many Legends, Hausdorff Institute for Mathematics | SigProc | YouTube-Lectures | 2016 |
5. | Microsoft Research - Machine Learning Course | S V N Vishwanathan and Prateek Jain MS-Research | None |
YouTube-Lectures | 2016 |
6. | Deep Learning Summer School | Many Legends, Université de Montréal | DL-SS-16 | YouTube-Lectures | 2016 |
7. | Representation Learning | Many Legends, Simons Institute | RepLearn | YouTube-Lectures | 2017 |
8. | Foundations of Machine Learning | Many Legends, Simons Institute | ML-BootCamp | YouTube-Lectures | 2017 |
9. | Optimization, Statistics, and Uncertainty | Many Legends, Simons Institute | Optim-Stats | YouTube-Lectures | 2017 |
10. | Deep Learning: Theory, Algorithms, and Applications | Many Legends, TU-Berlin | DL: TAA | YouTube-Lectures | 2017 |
11. | Foundations of Data Science | Many Legends, Simons Institute | DS-BootCamp | YouTube-Lectures | 2018 |
12. | Deep|Bayes | Many Legends, HSE Moscow | DeepBayes.ru | YouTube-Lectures | 2018 |
13. | New Deep Learning Techniques | Many Legends, IPAM UCLA | IPAM-Workshop | YouTube-Lectures | 2018 |
⬜ Optimization courses which form the foundation for ML, DL, RL
⬜ Computer Vision courses which are DL & ML heavy
⬜ NLP courses which are DL, RL, & ML heavy
⬜ Speech recognition courses which are DL heavy
⬜ Courses on Graph Neural Networks
⬜ Section on DL/RL/ML Summer School Lectures
If you find a course that fits in any of the above categories (i.e. DL, ML, RL, CV, NLP), and the course has lecture videos (with slides - optional), then please raise an issue or send a PR by updating the course according to the above format.
Danke Sehr!