Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add execution_span.TwirledSliceSpan #2011

Merged
merged 7 commits into from
Nov 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions qiskit_ibm_runtime/execution_span/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,9 +35,11 @@
ExecutionSpans
ShapeType
SliceSpan
TwirledSliceSpan
"""

from .double_slice_span import DoubleSliceSpan
from .execution_span import ExecutionSpan, ShapeType
from .execution_spans import ExecutionSpans
from .slice_span import SliceSpan
from .twirled_slice_span import TwirledSliceSpan
12 changes: 6 additions & 6 deletions qiskit_ibm_runtime/execution_span/double_slice_span.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,16 +28,16 @@ class DoubleSliceSpan(ExecutionSpan):
"""An :class:`~.ExecutionSpan` for data stored in a sliceable format.
This type of execution span references pub result data by assuming that it is a sliceable
portion of the data where the shots are the outermost slice and the rest of the data is flattened.
Therefore, for each pub dependent on this span, the constructor accepts two :class:`slice` objects,
along with the corresponding shape of the data to be sliced; in contrast to
:class:`~.SliceSpan`, this class does not assume that *all* shots for a particular set of parameter
values are contiguous in the array of data.
portion of the data where the shots are the outermost slice and the rest of the data is
flattened. Therefore, for each pub dependent on this span, the constructor accepts two
:class:`slice` objects, along with the corresponding shape of the data to be sliced; in contrast
to :class:`~.SliceSpan`, this class does not assume that *all* shots for a particular set of
parameter values are contiguous in the array of data.
Args:
start: The start time of the span, in UTC.
stop: The stop time of the span, in UTC.
data_slices: A map from pub indices to ``(shape_tuple, slice, slice)``.
data_slices: A map from pub indices to ``(shape_tuple, flat_shape_slice, shots_slice)``.
"""

def __init__(
Expand Down
92 changes: 92 additions & 0 deletions qiskit_ibm_runtime/execution_span/twirled_slice_span.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""TwirledSliceSpan"""

from __future__ import annotations

from datetime import datetime
from typing import Iterable

import math
import numpy as np
import numpy.typing as npt

from .execution_span import ExecutionSpan, ShapeType


class TwirledSliceSpan(ExecutionSpan):
"""An :class:`~.ExecutionSpan` for data stored in a sliceable format when twirling.

This type of execution span references pub result data that came from a twirled sampler
experiment which was executed by either prepending or appending an axis to paramater values
to account for twirling. Concretely, ``data_slices`` is a map from pub slices to tuples
``(twirled_shape, at_front, shape_slice, shots_slice)`` where

* ``twirled_shape`` is the shape tuple including a twirling axis, and where the last
axis is shots per randomization,
* ``at_front`` is whether ``num_randomizations`` is at the front of the tuple, as
opposed to right before the ``shots`` axis at the end,
* ``shape_slice`` is a slice of an array of shape ``twirled_shape[:-1]``, flattened,
* and ``shots_slice`` is a slice of ``twirled_shape[-1]``.

Args:
start: The start time of the span, in UTC.
stop: The stop time of the span, in UTC.
data_slices: A map from pub indices to length-4 tuples described above.
"""

def __init__(
self,
start: datetime,
stop: datetime,
data_slices: dict[int, tuple[ShapeType, bool, slice, slice]],
):
super().__init__(start, stop)
self._data_slices = data_slices

def __eq__(self, other: object) -> bool:
return isinstance(other, TwirledSliceSpan) and (
self.start == other.start
and self.stop == other.stop
and self._data_slices == other._data_slices
)

@property
def pub_idxs(self) -> list[int]:
return sorted(self._data_slices)

@property
def size(self) -> int:
size = 0
for shape, _, shape_sl, shots_sl in self._data_slices.values():
size += len(range(math.prod(shape[:-1]))[shape_sl]) * len(range(shape[-1])[shots_sl])
return size

def mask(self, pub_idx: int) -> npt.NDArray[np.bool_]:
twirled_shape, at_front, shape_sl, shots_sl = self._data_slices[pub_idx]
mask = np.zeros(twirled_shape, dtype=np.bool_)
mask.reshape((np.prod(twirled_shape[:-1]), twirled_shape[-1]))[(shape_sl, shots_sl)] = True

if at_front:
# if the first axis is over twirling samples, push them right before shots
ndim = len(twirled_shape)
mask = mask.transpose((*range(1, ndim - 1), 0, ndim - 1))
twirled_shape = twirled_shape[1:-1] + twirled_shape[:1] + twirled_shape[-1:]

# merge twirling axis and shots axis before returning
return mask.reshape((*twirled_shape[:-2], math.prod(twirled_shape[-2:])))

def filter_by_pub(self, pub_idx: int | Iterable[int]) -> "TwirledSliceSpan":
SamFerracin marked this conversation as resolved.
Show resolved Hide resolved
pub_idx = {pub_idx} if isinstance(pub_idx, int) else set(pub_idx)
slices = {idx: val for idx, val in self._data_slices.items() if idx in pub_idx}
return TwirledSliceSpan(self.start, self.stop, slices)
18 changes: 18 additions & 0 deletions qiskit_ibm_runtime/utils/json.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,7 @@
DoubleSliceSpan,
SliceSpan,
ExecutionSpans,
TwirledSliceSpan,
)

from .noise_learner_result import NoiseLearnerResult
Expand Down Expand Up @@ -341,6 +342,16 @@ def default(self, obj: Any) -> Any: # pylint: disable=arguments-differ
},
}
return {"__type__": "DoubleSliceSpan", "__value__": out_val}
if isinstance(obj, TwirledSliceSpan):
out_val = {
"start": obj.start,
"stop": obj.stop,
"data_slices": {
idx: (shape, at_front, arg_sl.start, arg_sl.stop, shot_sl.start, shot_sl.stop)
for idx, (shape, at_front, arg_sl, shot_sl) in obj._data_slices.items()
},
}
return {"__type__": "TwirledSliceSpan", "__value__": out_val}
if isinstance(obj, SliceSpan):
out_val = {
"start": obj.start,
Expand Down Expand Up @@ -470,6 +481,13 @@ def object_hook(self, obj: Any) -> Any:
for idx, (shape, arg0, arg1, shot0, shot1) in obj_val["data_slices"].items()
}
return DoubleSliceSpan(**obj_val)
if obj_type == "TwirledSliceSpan":
data_slices = obj_val["data_slices"]
obj_val["data_slices"] = {
int(idx): (tuple(shape), at_start, slice(arg0, arg1), slice(shot0, shot1))
for idx, (shape, at_start, arg0, arg1, shot0, shot1) in data_slices.items()
}
return TwirledSliceSpan(**obj_val)
if obj_type == "ExecutionSpan":
new_slices = {
int(idx): (tuple(shape), slice(*sl_args))
Expand Down
4 changes: 4 additions & 0 deletions release-notes/unreleased/2011.feat.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
Added :class:`.TwirledSliceSpan`, an :class:`ExecutionSpan` to be used when
twirling is enabled in the sampler. In particular, it keeps track of an extra shape
axis corresponding to twirling randomizations, and also whether this axis exists at
the front of the shape tuple, or right before the shots axis.
9 changes: 9 additions & 0 deletions test/unit/test_data_serialization.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@
DoubleSliceSpan,
SliceSpan,
ExecutionSpans,
TwirledSliceSpan,
)

from .mock.fake_runtime_client import CustomResultRuntimeJob
Expand Down Expand Up @@ -468,6 +469,14 @@ def make_test_primitive_results(self):
datetime(2024, 8, 21),
{0: ((14,), slice(2, 3), slice(1, 9))},
),
TwirledSliceSpan(
datetime(2024, 9, 20),
datetime(2024, 3, 21),
{
0: ((14, 18, 21), True, slice(2, 3), slice(1, 9)),
2: ((18, 14, 19), False, slice(2, 3), slice(1, 9)),
},
),
]
)
}
Expand Down
119 changes: 118 additions & 1 deletion test/unit/test_execution_span.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,12 @@

import numpy as np
import numpy.testing as npt
from qiskit_ibm_runtime.execution_span import SliceSpan, DoubleSliceSpan, ExecutionSpans
from qiskit_ibm_runtime.execution_span import (
SliceSpan,
DoubleSliceSpan,
ExecutionSpans,
TwirledSliceSpan,
)

from ..ibm_test_case import IBMTestCase

Expand Down Expand Up @@ -222,6 +227,118 @@ def test_filter_by_pub(self):
)


@ddt.ddt
class TestTwirledSliceSpan(IBMTestCase):
"""Class for testing TwirledSliceSpan."""

def setUp(self) -> None:
super().setUp()
self.start1 = datetime(2024, 10, 11, 4, 31, 30)
self.stop1 = datetime(2024, 10, 11, 4, 31, 34)
self.slices1 = {
2: ((3, 1, 5), True, slice(1), slice(2, 4)),
0: ((3, 5, 18, 10), False, slice(10, 13), slice(2, 5)),
}
self.span1 = TwirledSliceSpan(self.start1, self.stop1, self.slices1)

self.start2 = datetime(2024, 10, 16, 11, 9, 20)
self.stop2 = datetime(2024, 10, 16, 11, 9, 30)
self.slices2 = {
0: ((7, 5, 100), True, slice(3, 5), slice(20, 40)),
1: ((1, 5, 2, 3), False, slice(3, 9), slice(1, 3)),
}
self.span2 = TwirledSliceSpan(self.start2, self.stop2, self.slices2)

def test_limits(self):
"""Test the start and stop properties"""
self.assertEqual(self.span1.start, self.start1)
self.assertEqual(self.span1.stop, self.stop1)
self.assertEqual(self.span2.start, self.start2)
self.assertEqual(self.span2.stop, self.stop2)

def test_equality(self):
"""Test the equality method."""
self.assertEqual(self.span1, self.span1)
self.assertEqual(self.span1, TwirledSliceSpan(self.start1, self.stop1, self.slices1))
self.assertNotEqual(self.span1, "aoeu")
self.assertNotEqual(self.span1, self.span2)

def test_duration(self):
"""Test the duration property"""
self.assertEqual(self.span1.duration, 4)
self.assertEqual(self.span2.duration, 10)

def test_repr(self):
"""Test the repr method"""
expect = "start='2024-10-11 04:31:30', stop='2024-10-11 04:31:34', size=11"
self.assertEqual(repr(self.span1), f"TwirledSliceSpan(<{expect}>)")

def test_size(self):
"""Test the size property"""
self.assertEqual(self.span1.size, 1 * 2 + 3 * 3)
self.assertEqual(self.span2.size, 2 * 20 + 6 * 2)

def test_pub_idxs(self):
"""Test the pub_idxs property"""
self.assertEqual(self.span1.pub_idxs, [0, 2])
self.assertEqual(self.span2.pub_idxs, [0, 1])

def test_mask(self):
"""Test the mask() method"""
# reminder: ((3, 1, 5), True, slice(1), slice(2, 4))
mask1 = np.zeros((3, 1, 5), dtype=bool)
mask1.reshape((3, 5))[:1, 2:4] = True
mask1 = mask1.transpose((1, 0, 2)).reshape((1, 15))
npt.assert_array_equal(self.span1.mask(2), mask1)

# reminder: ((1, 5, 2, 3), False, slice(3,9), slice(1, 3)),
mask2 = [
[
[[[0, 0, 0], [0, 0, 0]]],
[[[0, 0, 0], [0, 1, 1]]],
[[[0, 1, 1], [0, 1, 1]]],
[[[0, 1, 1], [0, 1, 1]]],
[[[0, 1, 1], [0, 0, 0]]],
]
]
mask2 = np.array(mask2, dtype=bool).reshape((1, 5, 6))
npt.assert_array_equal(self.span2.mask(1), mask2)

@ddt.data(
(0, True, True),
([0, 1], True, True),
([0, 1, 2], True, True),
([1, 2], True, True),
([1], False, True),
(2, True, False),
([0, 2], True, True),
)
@ddt.unpack
def test_contains_pub(self, idx, span1_expected_res, span2_expected_res):
"""The the contains_pub method"""
self.assertEqual(self.span1.contains_pub(idx), span1_expected_res)
self.assertEqual(self.span2.contains_pub(idx), span2_expected_res)

def test_filter_by_pub(self):
"""The the filter_by_pub method"""
self.assertEqual(
self.span1.filter_by_pub([]), TwirledSliceSpan(self.start1, self.stop1, {})
)
self.assertEqual(
self.span2.filter_by_pub([]), TwirledSliceSpan(self.start2, self.stop2, {})
)

self.assertEqual(
self.span1.filter_by_pub([1, 0]),
TwirledSliceSpan(self.start1, self.stop1, {0: self.slices1[0]}),
)

self.assertEqual(
self.span1.filter_by_pub(2),
TwirledSliceSpan(self.start1, self.stop1, {2: self.slices1[2]}),
)


@ddt.ddt
class TestExecutionSpans(IBMTestCase):
"""Class for testing ExecutionSpans."""
Expand Down