Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix tensorrt output varible reshape #31733

Merged
merged 7 commits into from
Mar 23, 2021
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -168,11 +168,11 @@ void TensorRtSubgraphPass::CreateTensorRTOp(

std::set<std::string> output_names;
std::set<std::string> output_names_with_id;
std::vector<int> origin_output_dims;
std::map<std::string, int> origin_name_output_dims;
for (auto *x : node->outputs) {
output_names.insert(x->Name());
output_names_with_id.insert(x->Name() + std::to_string(x->id()));
origin_output_dims.push_back(x->Var()->GetShape().size());
origin_name_output_dims[x->Name()] = x->Var()->GetShape().size();
}

std::unordered_map<std::string, std::string> output_name_map;
Expand Down Expand Up @@ -216,11 +216,13 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
// output_mapping help us copy the data from the renamed ITensor
// to Tensor.
std::vector<std::string> output_mapping;
std::vector<int> renamed_output_dims;
for (auto name : output_names) {
PADDLE_ENFORCE_NE(output_name_map.count(name), 0,
platform::errors::PreconditionNotMet(
"The output_name_map should have %s", name));
output_mapping.push_back(output_name_map[name]);
renamed_output_dims.push_back(origin_name_output_dims[name]);
}
PADDLE_ENFORCE_EQ(output_mapping.empty(), false,
platform::errors::PreconditionNotMet(
Expand All @@ -243,7 +245,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
op_desc->SetAttr("workspace_size", Get<int>("workspace_size"));
op_desc->SetAttr("gpu_id", Get<int>("gpu_device_id"));
op_desc->SetAttr("output_name_mapping", output_mapping);
op_desc->SetAttr("origin_output_dims", origin_output_dims);
op_desc->SetAttr("origin_output_dims", renamed_output_dims);
op_desc->SetAttr("parameters", params);

// we record all inputs' shapes in attr to check if they are consistent
Expand Down
70 changes: 63 additions & 7 deletions paddle/fluid/inference/tensorrt/convert/fc_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,69 @@ class FcOpConverter : public OpConverter {
static_cast<size_t>(bias_num)};

if (engine_->with_dynamic_shape()) {
regist_fc(X, n_output, weight, bias);
// not NCHW layout, but NLP layout with added 'x 1 x 1'
auto x_dim = X->getDimensions();
if (x_dim.nbDims == 3 || x_dim.nbDims == 2) {
auto output_name = op_desc.Output("Out").front();
// add shuffle before fc
nvinfer1::Dims reshape_before_fc_dim;
reshape_before_fc_dim.nbDims = x_dim.nbDims + 2;
for (int i = 0; i < x_dim.nbDims; i++) {
reshape_before_fc_dim.d[i] = 0;
}
reshape_before_fc_dim.d[x_dim.nbDims] = 1;
reshape_before_fc_dim.d[x_dim.nbDims + 1] = 1;
auto* reshape_before_fc_layer =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
reshape_before_fc_layer->setName(
("shuffle_before_fc(Output: " + output_name + ")").c_str());

// add fc layer
auto* fc_layer = TRT_ENGINE_ADD_LAYER(
engine_, FullyConnected, *reshape_before_fc_layer->getOutput(0),
n_output, weight.get(), bias.get());
fc_layer->setName(("fc_layer(Output: " + output_name + ")").c_str());

// add shuffle after fc
nvinfer1::Dims reshape_after_fc_dim;
if (x_dim.nbDims == 3) {
if (x_num_col_dims == 2) {
reshape_after_fc_dim.nbDims = 3;
reshape_after_fc_dim.d[0] = 0;
reshape_after_fc_dim.d[1] = 0;
reshape_after_fc_dim.d[2] = 0;
} else {
reshape_after_fc_dim.nbDims = 2;
reshape_after_fc_dim.d[0] = 0;
auto dim = fc_layer->getOutput(0)->getDimensions();
reshape_after_fc_dim.d[1] = dim.d[1] * dim.d[2];
}
// x_dim.nbDims == 2
} else {
reshape_after_fc_dim.nbDims = 2;
reshape_after_fc_dim.d[0] = 0;
reshape_after_fc_dim.d[1] = 0;
}
auto* reshape_after_fc_layer =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *fc_layer->getOutput(0));
reshape_after_fc_layer->setReshapeDimensions(reshape_after_fc_dim);

if (activation_type == "relu") {
reshape_after_fc_layer->setName(
("shuffle_after_fc(Output: " + output_name + ")").c_str());
nvinfer1::IActivationLayer* relu_layer = TRT_ENGINE_ADD_LAYER(
engine_, Activation, *(reshape_after_fc_layer->getOutput(0)),
nvinfer1::ActivationType::kRELU);
RreplenishLayerAndOutput(relu_layer, "relu_after_fc_shuffle",
{output_name}, test_mode);
} else {
RreplenishLayerAndOutput(reshape_after_fc_layer, "shuffle_after_fc",
{output_name}, test_mode);
}
} else {
regist_fc(X, n_output, weight, bias);
}
return;
}
// in order to handle situations in NLP models(input dims < 3,
Expand All @@ -154,12 +216,6 @@ class FcOpConverter : public OpConverter {
auto input_d = X->getDimensions().d;
int reshape_dim3[3] = {0};
int reshape_dim4[4] = {0};
PADDLE_ENFORCE_EQ(
x_num_col_dims == 1 || x_num_col_dims == 2, true,
platform::errors::InvalidArgument(
"Wrong x_num_col_dims param of op mul. Paddle-TRT FC converter "
"expects x_num_col_dims is either 1 or 2, but got %d",
x_num_col_dims));
PADDLE_ENFORCE_LE(x_num_col_dims, input_dims,
platform::errors::InvalidArgument(
"Params and input dims mismatch. Paddle-TRT FC "
Expand Down
43 changes: 35 additions & 8 deletions paddle/fluid/inference/tensorrt/convert/multihead_matmul_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,8 @@ You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
Expand All @@ -28,7 +28,6 @@ class MultiheadMatMulOpConverter : public OpConverter {
"network structure";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
// Shouble be a 5 dims tensor.
auto* input = engine_->GetITensor(op_desc.Input("Input").front());

// fc weights and fc bias
Expand Down Expand Up @@ -69,6 +68,7 @@ class MultiheadMatMulOpConverter : public OpConverter {
int head_number = BOOST_GET_CONST(int, op_desc.GetAttr("head_number"));

nvinfer1::ILayer* layer = nullptr;
auto output_name = op_desc.Output("Out")[0];

if (engine_->with_dynamic_shape()) {
if (engine_->use_oss()) {
Expand Down Expand Up @@ -171,6 +171,12 @@ class MultiheadMatMulOpConverter : public OpConverter {
plugin_inputs.data(), plugin_inputs.size(), *plugin);
layer = plugin_layer;
} else {
PADDLE_ENFORCE_EQ(
input->getDimensions().nbDims, 3,
platform::errors::InvalidArgument(
"The Input dim of the MultiheadMatMul should be 3, "
"but it's (%d) now.",
input->getDimensions().nbDims));
// transpose weight_data from m * n to n * m
auto* input_bias_qk =
engine_->GetITensor(op_desc.Input("BiasQK").front());
Expand All @@ -184,15 +190,37 @@ class MultiheadMatMulOpConverter : public OpConverter {
static_cast<void*>(bias_data),
static_cast<size_t>(bias_t->numel())};

auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input,
n, weight.get(), bias.get());
auto* fc_out = fc_layer->getOutput(0);
// add shuffle before fc
nvinfer1::Dims reshape_before_fc_dim;
reshape_before_fc_dim.nbDims = 5;
reshape_before_fc_dim.d[0] = 0;
reshape_before_fc_dim.d[1] = 0;
reshape_before_fc_dim.d[2] = 0;
reshape_before_fc_dim.d[3] = 1;
reshape_before_fc_dim.d[4] = 1;
auto* reshape_before_fc_layer =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
reshape_before_fc_layer->setName(
("shuffle_before_multihead_mamul(Output: " + output_name + ")")
.c_str());

// add layer fc
auto* fc_layer = TRT_ENGINE_ADD_LAYER(
engine_, FullyConnected, *reshape_before_fc_layer->getOutput(0), n,
weight.get(), bias.get());
fc_layer->setName(
("multihead_mamul_fc(Output: " + output_name + ")").c_str());

// no need to add shuffle after fc, just change it in
// QkvToContextPluginDynamic

// add qkv to context
int head_size = hidden_out / head_number;
float scale = BOOST_GET_CONST(float, op_desc.GetAttr("alpha"));

std::vector<nvinfer1::ITensor*> plugin_inputs;
plugin_inputs.push_back(fc_out);
plugin_inputs.push_back(fc_layer->getOutput(0));
plugin_inputs.push_back(input_bias_qk);
bool with_fp16 =
engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
Expand All @@ -208,7 +236,6 @@ class MultiheadMatMulOpConverter : public OpConverter {
"You can use the config.SetTRTDynamicShapeInfo(...) interface to set "
"the shape information to run the dynamic shape mode."));
}
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "multihead_matmul", {output_name},
test_mode);
#else
Expand Down
13 changes: 7 additions & 6 deletions paddle/fluid/inference/tensorrt/convert/softmax_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ class SoftMaxOpConverter : public OpConverter {
uint32_t axes = std::max(0, input_dims - 3);
// TODO(cryoco): Poor workaround. Fix padded dims problem when TRT layers
// support Nd.
// Tips: Dynammic shape alreay fixes.
int padded_dims = 0;
int explicit_batch = 0;
if (engine_->with_dynamic_shape()) explicit_batch = 1;
Expand All @@ -62,16 +63,16 @@ class SoftMaxOpConverter : public OpConverter {
}
}
if (!engine_->with_dynamic_shape()) {
if (axis == -1) {
axes = input_dims - 1 - padded_dims;
if (axis < 0) {
axes = input_dims + axis - padded_dims;
} else {
axes = axis;
axes = axis - 1;
}
} else {
if (axis == -1) {
axes = input_dims - 1 - padded_dims;
if (axis < 0) {
axes = input_dims + axis;
} else {
axes = axis + 1;
axes = axis;
}
}
layer->setAxes(1 << axes);
Expand Down
11 changes: 11 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -191,6 +191,17 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
// current not support axis from input, use default 0
if (!with_dynamic_shape || desc.Input("Axis").size() > 0) return false;
}
if (op_type == "fc" || op_type == "mul") {
const int x_num_col_dims =
desc.HasAttr("x_num_col_dims")
? BOOST_GET_CONST(int, desc.GetAttr("x_num_col_dims"))
: (desc.HasAttr("in_num_col_dims")
? BOOST_GET_CONST(int, desc.GetAttr("in_num_col_dims"))
: 1);
if (x_num_col_dims != 1 && x_num_col_dims != 2) {
return false;
}
}
if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
}
return false;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -200,12 +200,10 @@ nvinfer1::DimsExprs EmbEltwiseLayernormPluginDynamic::getOutputDimensions(
"but it's (%d)",
output_index));
nvinfer1::DimsExprs ret;
ret.nbDims = 5;
ret.nbDims = 3;
ret.d[0] = inputs[0].d[0];
ret.d[1] = inputs[0].d[1];
ret.d[2] = expr_builder.constant(hidden_size_);
ret.d[3] = expr_builder.constant(1);
ret.d[4] = expr_builder.constant(1);
return ret;
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -169,12 +169,10 @@ nvinfer1::DimsExprs QkvToContextPluginDynamic::getOutputDimensions(
"it has (%d) inputs",
nb_inputs));
nvinfer1::DimsExprs ret;
ret.nbDims = 5;
ret.nbDims = 3;
ret.d[0] = inputs[0].d[0];
ret.d[1] = inputs[0].d[1];
ret.d[2] = expr_builder.constant(head_size_ * head_number_);
ret.d[3] = expr_builder.constant(1);
ret.d[4] = expr_builder.constant(1);
return ret;
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -54,11 +54,6 @@ void SkipLayerNormPluginDynamic::terminate() {
nvinfer1::DimsExprs SkipLayerNormPluginDynamic::getOutputDimensions(
int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
nvinfer1::IExprBuilder &expr_builder) {
PADDLE_ENFORCE_EQ(
inputs[0].nbDims, 5,
platform::errors::InvalidArgument(
"The Input dim of the SkipLayernorm should be 5, but it's (%d) now.",
inputs[0].nbDims));
return inputs[0];
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,8 @@ nvinfer1::DimsExprs SpecialSlicePluginDynamic::getOutputDimensions(
output.d[1] = one;
output.d[0] = expr_builder.operation(nvinfer1::DimensionOperation::kSUB,
*inputs[1].d[0], *one);
// remove padding 1
output.nbDims -= 2;

return output;
}
Expand Down