Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove unncessary python list appends #373

Merged
merged 4 commits into from
Jul 25, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 2 additions & 5 deletions python/kiss_icp/datasets/paris_luco.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,9 +63,6 @@ def load_gt_poses(self, file_path):

def apply_calibration(self, poses):
"""ParisLucoDataset only has a x, y, z trajectory, so we must will em all"""
new_poses = []
for pose in poses:
T = pose.copy()
T[:3, :3] = np.eye(3)
new_poses.append(T)
new_poses = poses.copy()
new_poses[:, :3, :3] = np.eye(3)
return new_poses
6 changes: 3 additions & 3 deletions python/kiss_icp/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,20 +20,20 @@
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from typing import List, Tuple
from typing import Tuple

import numpy as np

from kiss_icp.pybind import kiss_icp_pybind


def sequence_error(gt_poses: np.ndarray, results_poses: List[np.ndarray]) -> Tuple[float, float]:
def sequence_error(gt_poses: np.ndarray, results_poses: np.ndarray) -> Tuple[float, float]:
"""Sptis the sequence error for a given trajectory in camera coordinate frames."""
return kiss_icp_pybind._kitti_seq_error(gt_poses, results_poses)


def absolute_trajectory_error(
gt_poses: np.ndarray, results_poses: List[np.ndarray]
gt_poses: np.ndarray, results_poses: np.ndarray
) -> Tuple[float, float]:
"""Sptis the sequence error for a given trajectory in camera coordinate frames."""
return kiss_icp_pybind._absolute_trajectory_error(gt_poses, results_poses)
29 changes: 15 additions & 14 deletions python/kiss_icp/pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
import os
import time
from pathlib import Path
from typing import List, Optional
from typing import Optional

import numpy as np
from pyquaternion import Quaternion
Expand Down Expand Up @@ -64,8 +64,8 @@ def __init__(
# Pipeline
self.odometry = KissICP(config=self.config)
self.results = PipelineResults()
self.times = []
self.poses = []
self.times = np.zeros(self._n_scans)
self.poses = np.zeros((self._n_scans, 4, 4))
self.has_gt = hasattr(self._dataset, "gt_poses")
self.gt_poses = self._dataset.gt_poses[self._first : self._last] if self.has_gt else None
self.dataset_name = self._dataset.__class__.__name__
Expand Down Expand Up @@ -97,8 +97,8 @@ def _run_pipeline(self):
raw_frame, timestamps = self._next(idx)
start_time = time.perf_counter_ns()
source, keypoints = self.odometry.register_frame(raw_frame, timestamps)
self.poses.append(self.odometry.last_pose)
self.times.append(time.perf_counter_ns() - start_time)
self.poses[idx - self._first] = self.odometry.last_pose
self.times[idx - self._first] = time.perf_counter_ns() - start_time
self.visualizer.update(source, keypoints, self.odometry.local_map, self.poses[-1])
saurabh1002 marked this conversation as resolved.
Show resolved Hide resolved

def _next(self, idx):
Expand All @@ -112,22 +112,23 @@ def _next(self, idx):
return frame, timestamps

@staticmethod
def save_poses_kitti_format(filename: str, poses: List[np.ndarray]):
def save_poses_kitti_format(filename: str, poses: np.ndarray):
def _to_kitti_format(poses: np.ndarray) -> np.ndarray:
return np.array([np.concatenate((pose[0], pose[1], pose[2])) for pose in poses])
return poses[:, :3].reshape(-1, 12)

np.savetxt(fname=f"{filename}_kitti.txt", X=_to_kitti_format(poses))

@staticmethod
def save_poses_tum_format(filename, poses, timestamps):
def _to_tum_format(poses, timestamps):
tum_data = []
tum_data = np.zeros((len(poses), 8))
with contextlib.suppress(ValueError):
for idx in range(len(poses)):
tx, ty, tz = poses[idx][:3, -1].flatten()
tx, ty, tz = poses[idx, :3, -1].flatten()
qw, qx, qy, qz = Quaternion(matrix=poses[idx], atol=0.01).elements
tum_data.append([float(timestamps[idx]), tx, ty, tz, qx, qy, qz, qw])
return np.array(tum_data).astype(np.float64)
tum_data[idx] = np.r_[float(timestamps[idx]), tx, ty, tz, qx, qy, qz, qw]
tum_data.flatten()
return tum_data.astype(np.float64)

np.savetxt(fname=f"{filename}_tum.txt", X=_to_tum_format(poses, timestamps), fmt="%.4f")

Expand All @@ -142,7 +143,7 @@ def _get_frames_timestamps(self):
return (
self._dataset.get_frames_timestamps()
if hasattr(self._dataset, "get_frames_timestamps")
else np.arange(0, len(self.poses), 1.0)
else np.arange(0, self._n_scans, 1.0)
)

def _save_poses(self, filename: str, poses, timestamps):
Expand Down Expand Up @@ -178,8 +179,8 @@ def _run_evaluation(self):

# Run timing metrics evaluation, always
def _get_fps():
total_time_s = sum(self.times) * 1e-9
return float(len(self.times) / total_time_s) if total_time_s > 0 else 0
total_time_s = np.sum(self.times) * 1e-9
return float(self._n_scans / total_time_s) if total_time_s > 0 else 0

fps = _get_fps()
avg_fps = int(np.floor(fps))
Expand Down
Loading