Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: update ConvMixer to support reactant #1063

Draft
wants to merge 9 commits into
base: ap/reactant_updates
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/src/.vitepress/config.mts
Original file line number Diff line number Diff line change
Expand Up @@ -243,8 +243,8 @@ export default defineConfig({
link: "https://github.com/LuxDL/Lux.jl/tree/main/examples/DDIM",
},
{
text: "ConvMixer on CIFAR-10",
link: "https://github.com/LuxDL/Lux.jl/tree/main/examples/ConvMixer",
text: "Different Vision Models on CIFAR-10",
link: "https://github.com/LuxDL/Lux.jl/tree/main/examples/CIFAR10",
},
],
},
Expand Down
6 changes: 3 additions & 3 deletions docs/src/tutorials/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -97,10 +97,10 @@
desc: "Train a Diffusion Model to generate images from Gaussian noises."
},
{
href: "https://github.com/LuxDL/Lux.jl/tree/main/examples/ConvMixer",
href: "https://github.com/LuxDL/Lux.jl/tree/main/examples/CIFAR10",
src: "https://datasets.activeloop.ai/wp-content/uploads/2022/09/CIFAR-10-dataset-Activeloop-Platform-visualization-image-1.webp",
caption: "ConvMixer on CIFAR-10",
desc: "Train ConvMixer on CIFAR-10 to 90% accuracy within 10 minutes."
caption: "Vision Models on CIFAR-10",
desc: "Train differnt vision models on CIFAR-10 to 90% accuracy within 10 minutes."

Check warning on line 103 in docs/src/tutorials/index.md

View workflow job for this annotation

GitHub Actions / Spell Check with Typos

"differnt" should be "different".
}
];

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
Comonicon = "863f3e99-da2a-4334-8734-de3dacbe5542"
ConcreteStructs = "2569d6c7-a4a2-43d3-a901-331e8e4be471"
DataAugmentation = "88a5189c-e7ff-4f85-ac6b-e6158070f02e"
Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9"
ImageCore = "a09fc81d-aa75-5fe9-8630-4744c3626534"
ImageShow = "4e3cecfd-b093-5904-9786-8bbb286a6a31"
Interpolations = "a98d9a8b-a2ab-59e6-89dd-64a1c18fca59"
Expand All @@ -11,18 +12,18 @@ MLDatasets = "eb30cadb-4394-5ae3-aed4-317e484a6458"
MLUtils = "f1d291b0-491e-4a28-83b9-f70985020b54"
OneHotArrays = "0b1bfda6-eb8a-41d2-88d8-f5af5cad476f"
Optimisers = "3bd65402-5787-11e9-1adc-39752487f4e2"
PreferenceTools = "ba661fbb-e901-4445-b070-854aec6bfbc5"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
ProgressBars = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
ProgressTables = "e0b4b9f6-8cc7-451e-9c86-94c5316e9f73"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Reactant = "3c362404-f566-11ee-1572-e11a4b42c853"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[compat]
Comonicon = "1.0.8"
ConcreteStructs = "0.2.3"
DataAugmentation = "0.3"
Enzyme = "0.13.16"
ImageCore = "0.10.2"
ImageShow = "0.3.8"
Interpolations = "0.15.1"
Expand All @@ -32,10 +33,8 @@ MLDatasets = "0.7.14"
MLUtils = "0.4.4"
OneHotArrays = "0.2.5"
Optimisers = "0.4.1"
PreferenceTools = "0.1.2"
Printf = "1.10"
ProgressBars = "1.5.1"
Random = "1.10"
StableRNGs = "1.0.2"
Reactant = "0.2.11"
Statistics = "1.10"
Zygote = "0.6.70"
66 changes: 36 additions & 30 deletions examples/ConvMixer/README.md → examples/CIFAR10/README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,35 @@
# Train ConvMixer on CIFAR-10
# Train Vision Models on CIFAR-10

✈️ 🚗 🐦 🐈 🦌 🐕 🐸 🐎 🚢 🚚
✈️ 🚗 🐦 🐈 🦌 🐕 🐸 🐎 🚢 🚚

We have the following scripts to train vision models on CIFAR-10:

1. `simple_cnn.jl`: Simple CNN model with a sequence of convolutional layers.
2. `mlp_mixer.jl`: MLP-Mixer model.
3. `conv_mixer.jl`: ConvMixer model.

To get the options for each script, run the script with the `--help` flag.

> [!NOTE]
> To train the model using Reactant.jl pass in `--backend=reactant` to the script. This is
> the recommended approch to train the models present in this directory.

Check warning on line 15 in examples/CIFAR10/README.md

View workflow job for this annotation

GitHub Actions / Spell Check with Typos

"approch" should be "approach".

## Simple CNN

```bash
julia --startup-file=no \
--project=. \
--threads=auto \
simple_cnn.jl \
--backend=reactant
```

On a RTX 4050 6GB Laptop GPU the training takes approximately 3 mins and the final training
and test accuracies are 97% and 65%, respectively.

## MLP-Mixer

## ConvMixer

> [!NOTE]
> This code has been adapted from https://github.com/locuslab/convmixer-cifar10
Expand All @@ -15,12 +44,13 @@
julia --startup-file=no \
--project=. \
--threads=auto \
main.jl \
conv_mixer.jl \
--lr-max=0.05 \
--weight-decay=0.0001
--weight-decay=0.0001 \
--backend=reactant
```

Here's an example of the output of the above command (on a V100 32GB GPU):
Here's an example output of the above command (on a RTX 4050 6GB Laptop GPU):

```
Epoch 1: Learning Rate 5.05e-03, Train Acc: 56.91%, Test Acc: 56.49%, Time: 129.84
Expand Down Expand Up @@ -50,31 +80,7 @@
Epoch 25: Learning Rate 4.12e-04, Train Acc: 100.00%, Test Acc: 90.83%, Time: 21.32
```

## Usage

```bash
main [options] [flags]

Options

--batchsize <512::Int>
--hidden-dim <256::Int>
--depth <8::Int>
--patch-size <2::Int>
--kernel-size <5::Int>
--weight-decay <0.01::Float64>
--seed <42::Int>
--epochs <25::Int>
--lr-max <0.01::Float64>

Flags
--clip-norm

-h, --help Print this help message.
--version Print version.
```

## Notes
### Notes

1. To match the results from the original repo, we need more augmentation strategies, that
are currently not implemented in DataAugmentation.jl.
Expand Down
139 changes: 139 additions & 0 deletions examples/CIFAR10/common.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
using ConcreteStructs, DataAugmentation, ImageShow, Lux, MLDatasets, MLUtils, OneHotArrays,
Printf, ProgressTables, Random
using LuxCUDA, Reactant

@concrete struct TensorDataset
dataset
transform
end

Base.length(ds::TensorDataset) = length(ds.dataset)

function Base.getindex(ds::TensorDataset, idxs::Union{Vector{<:Integer}, AbstractRange})
img = Image.(eachslice(convert2image(ds.dataset, idxs); dims=3))
y = onehotbatch(ds.dataset.targets[idxs], 0:9)
return stack(parent ∘ itemdata ∘ Base.Fix1(apply, ds.transform), img), y
end

function get_cifar10_dataloaders(batchsize; kwargs...)
cifar10_mean = (0.4914, 0.4822, 0.4465)
cifar10_std = (0.2471, 0.2435, 0.2616)

train_transform = RandomResizeCrop((32, 32)) |>
Maybe(FlipX{2}()) |>
ImageToTensor() |>
Normalize(cifar10_mean, cifar10_std)

test_transform = ImageToTensor() |> Normalize(cifar10_mean, cifar10_std)

trainset = TensorDataset(CIFAR10(:train), train_transform)
trainloader = DataLoader(trainset; batchsize, shuffle=true, kwargs...)

testset = TensorDataset(CIFAR10(:test), test_transform)
testloader = DataLoader(testset; batchsize, shuffle=false, kwargs...)

return trainloader, testloader
end

function accuracy(model, ps, st, dataloader)
total_correct, total = 0, 0
cdev = cpu_device()
for (x, y) in dataloader
target_class = onecold(cdev(y))
predicted_class = onecold(cdev(first(model(x, ps, st))))
total_correct += sum(target_class .== predicted_class)
total += length(target_class)
end
return total_correct / total
end

function get_accelerator_device(backend::String)
if backend == "gpu_if_available"
return gpu_device()
elseif backend == "gpu"
return gpu_device(; force=true)
elseif backend == "reactant"
return reactant_device(; force=true)
elseif backend == "cpu"
return cpu_device()
else
error("Invalid backend: $(backend). Valid Options are: `gpu_if_available`, `gpu`, \
`reactant`, and `cpu`.")
end
end

function train_model(
model, opt, scheduler=nothing;
backend::String, batchsize::Int=512, seed::Int=1234, epochs::Int=25
)
rng = Random.default_rng()
Random.seed!(rng, seed)

accelerator_device = get_accelerator_device(backend)
kwargs = accelerator_device isa ReactantDevice ? (; partial=false) : ()
trainloader, testloader = get_cifar10_dataloaders(batchsize; kwargs...) |>
accelerator_device

ps, st = Lux.setup(rng, model) |> accelerator_device

train_state = Training.TrainState(model, ps, st, opt)

adtype = backend == "reactant" ? AutoEnzyme() : AutoZygote()

if backend == "reactant"
x_ra = rand(rng, Float32, size(first(trainloader)[1])) |> accelerator_device
@printf "[Info] Compiling model with Reactant.jl\n"
st_test = Lux.testmode(st)
model_compiled = @compile model(x_ra, ps, st_test)
@printf "[Info] Model compiled!\n"
else
model_compiled = model
end

loss_fn = CrossEntropyLoss(; logits=Val(true))

pt = ProgressTable(;
header=[
"Epoch", "Learning Rate", "Train Accuracy (%)", "Test Accuracy (%)", "Time (s)"
],
widths=[24, 24, 24, 24, 24],
format=["%3d", "%.6f", "%.6f", "%.6f", "%.6f"],
color=[:normal, :normal, :blue, :blue, :normal],
border=true,
alignment=[:center, :center, :center, :center, :center]
)

@printf "[Info] Training model\n"
initialize(pt)

for epoch in 1:epochs
stime = time()
lr = 0
for (i, (x, y)) in enumerate(trainloader)
if scheduler !== nothing
lr = scheduler((epoch - 1) + (i + 1) / length(trainloader))
train_state = Optimisers.adjust!(train_state, lr)
end
(_, loss, _, train_state) = Training.single_train_step!(
adtype, loss_fn, (x, y), train_state
)
isnan(loss) && error("NaN loss encountered!")
end
ttime = time() - stime

train_acc = accuracy(
model_compiled, train_state.parameters,
Lux.testmode(train_state.states), trainloader
) * 100
test_acc = accuracy(
model_compiled, train_state.parameters,
Lux.testmode(train_state.states), testloader
) * 100

scheduler === nothing && (lr = NaN32)
next(pt, [epoch, lr, train_acc, test_acc, ttime])
end

finalize(pt)
@printf "[Info] Finished training\n"
end
50 changes: 50 additions & 0 deletions examples/CIFAR10/conv_mixer.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
using Comonicon, Interpolations, Lux, Optimisers, Printf, Random, Statistics, Zygote, Enzyme

@isdefined(includet) ? includet("common.jl") : include("common.jl")

CUDA.allowscalar(false)

function ConvMixer(; dim, depth, kernel_size=5, patch_size=2)
#! format: off
return Chain(
Conv((patch_size, patch_size), 3 => dim, gelu; stride=patch_size),
BatchNorm(dim),
[
Chain(
SkipConnection(
Chain(
Conv(
(kernel_size, kernel_size), dim => dim, gelu;
groups=dim, pad=SamePad()
),
BatchNorm(dim)
),
+
),
Conv((1, 1), dim => dim, gelu),
BatchNorm(dim)
)
for _ in 1:depth
]...,
GlobalMeanPool(),
FlattenLayer(),
Dense(dim => 10)
)
#! format: on
end

Comonicon.@main function main(; batchsize::Int=512, hidden_dim::Int=256, depth::Int=8,
patch_size::Int=2, kernel_size::Int=5, weight_decay::Float64=0.0001,
clip_norm::Bool=false, seed::Int=1234, epochs::Int=25, lr_max::Float64=0.05,
backend::String="reactant")
model = ConvMixer(; dim=hidden_dim, depth, kernel_size, patch_size)

opt = AdamW(; eta=lr_max, lambda=weight_decay)
clip_norm && (opt = OptimiserChain(ClipNorm(), opt))

lr_schedule = linear_interpolation(
[0, epochs * 2 ÷ 5, epochs * 4 ÷ 5, epochs + 1], [0, lr_max, lr_max / 20, 0]
)

return train_model(model, opt, lr_schedule; backend, batchsize, seed, epochs)
end
6 changes: 6 additions & 0 deletions examples/CIFAR10/mlp_mixer.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
using Comonicon, Lux, Optimisers, Printf, Random, Statistics, Zygote, Enzyme

CUDA.allowscalar(false)

@isdefined(includet) ? includet("common.jl") : include("common.jl")

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

[JuliaFormatter] reported by reviewdog 🐶

Suggested change

36 changes: 36 additions & 0 deletions examples/CIFAR10/simple_cnn.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
using Comonicon, Lux, Optimisers, Printf, Random, Statistics, Zygote, Enzyme

@isdefined(includet) ? includet("common.jl") : include("common.jl")

CUDA.allowscalar(false)

function SimpleCNN()
return Chain(
Conv((3, 3), 3 => 16, gelu; stride=2, pad=1),
BatchNorm(16),
Conv((3, 3), 16 => 32, gelu; stride=2, pad=1),
BatchNorm(32),
Conv((3, 3), 32 => 64, gelu; stride=2, pad=1),
BatchNorm(64),
Conv((3, 3), 64 => 128, gelu; stride=2, pad=1),
BatchNorm(128),
GlobalMeanPool(),
FlattenLayer(),
Dense(128 => 64, gelu),
BatchNorm(64),
Dense(64 => 10)
)
end

Comonicon.@main function main(;
batchsize::Int=512, weight_decay::Float64=0.0001,
clip_norm::Bool=false, seed::Int=1234, epochs::Int=50, lr::Float64=0.003,
backend::String="reactant"
)
model = SimpleCNN()

opt = AdamW(; eta=lr, lambda=weight_decay)
clip_norm && (opt = OptimiserChain(ClipNorm(), opt))

return train_model(model, opt, nothing; backend, batchsize, seed, epochs)
end
Loading
Loading