Skip to content
This repository has been archived by the owner on Oct 9, 2023. It is now read-only.

Commit

Permalink
Refactor tabular data to use classification targets handling (#1114)
Browse files Browse the repository at this point in the history
  • Loading branch information
ethanwharris authored Jan 14, 2022
1 parent 127b7c0 commit 428cdb8
Show file tree
Hide file tree
Showing 18 changed files with 336 additions and 186 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

- Fixed `InstanceSegmentationData.from_voc` ([#1102](https://github.com/PyTorchLightning/lightning-flash/pull/1102))

- Fixed a bug when loading tabular data for prediction without a target field / column ([#1114](https://github.com/PyTorchLightning/lightning-flash/pull/1114))

### Removed

## [0.6.0] - 2021-13-12
Expand Down
7 changes: 6 additions & 1 deletion docs/source/api/tabular.rst
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,9 @@ ______________
~classification.model.TabularClassifier
~classification.data.TabularClassificationData

classification.input.TabularClassificationDataFrameInput
classification.input.TabularClassificationCSVInput

Regression
__________

Expand All @@ -31,6 +34,9 @@ __________
~regression.model.TabularRegressor
~regression.data.TabularRegressionData

regression.input.TabularRegressionDataFrameInput
regression.input.TabularRegressionCSVInput

Forecasting
___________

Expand All @@ -56,5 +62,4 @@ __________________
~data.TabularData

input.TabularDataFrameInput
input.TabularCSVInput
input.TabularDeserializer
2 changes: 1 addition & 1 deletion flash/tabular/classification/cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def tabular_classification():
"categorical_fields",
"num_features",
"cat_dims",
"output_dim",
"num_classes",
},
)

Expand Down
95 changes: 94 additions & 1 deletion flash/tabular/classification/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,101 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Type, Union

from flash.core.data.data_pipeline import DataPipelineState
from flash.core.data.io.input import Input
from flash.core.data.io.input_transform import INPUT_TRANSFORM_TYPE, InputTransform
from flash.core.utilities.imports import _PANDAS_AVAILABLE
from flash.core.utilities.stages import RunningStage
from flash.tabular.classification.input import TabularClassificationCSVInput, TabularClassificationDataFrameInput
from flash.tabular.data import TabularData

if _PANDAS_AVAILABLE:
from pandas.core.frame import DataFrame
else:
DataFrame = object


class TabularClassificationData(TabularData):
is_regression = False
@classmethod
def from_data_frame(
cls,
categorical_fields: Optional[Union[str, List[str]]] = None,
numerical_fields: Optional[Union[str, List[str]]] = None,
target_fields: Optional[Union[str, List[str]]] = None,
parameters: Optional[Dict[str, Any]] = None,
train_data_frame: Optional[DataFrame] = None,
val_data_frame: Optional[DataFrame] = None,
test_data_frame: Optional[DataFrame] = None,
predict_data_frame: Optional[DataFrame] = None,
train_transform: INPUT_TRANSFORM_TYPE = InputTransform,
val_transform: INPUT_TRANSFORM_TYPE = InputTransform,
test_transform: INPUT_TRANSFORM_TYPE = InputTransform,
predict_transform: INPUT_TRANSFORM_TYPE = InputTransform,
input_cls: Type[Input] = TabularClassificationDataFrameInput,
transform_kwargs: Optional[Dict] = None,
**data_module_kwargs: Any,
) -> "TabularClassificationData":
ds_kw = dict(
data_pipeline_state=DataPipelineState(),
transform_kwargs=transform_kwargs,
input_transforms_registry=cls.input_transforms_registry,
categorical_fields=categorical_fields,
numerical_fields=numerical_fields,
target_fields=target_fields,
parameters=parameters,
)

train_input = input_cls(RunningStage.TRAINING, train_data_frame, transform=train_transform, **ds_kw)

ds_kw["parameters"] = train_input.parameters if train_input else parameters

return cls(
train_input,
input_cls(RunningStage.VALIDATING, val_data_frame, transform=val_transform, **ds_kw),
input_cls(RunningStage.TESTING, test_data_frame, transform=test_transform, **ds_kw),
input_cls(RunningStage.PREDICTING, predict_data_frame, transform=predict_transform, **ds_kw),
**data_module_kwargs,
)

@classmethod
def from_csv(
cls,
categorical_fields: Optional[Union[str, List[str]]] = None,
numerical_fields: Optional[Union[str, List[str]]] = None,
target_fields: Optional[Union[str, List[str]]] = None,
parameters: Optional[Dict[str, Any]] = None,
train_file: Optional[str] = None,
val_file: Optional[str] = None,
test_file: Optional[str] = None,
predict_file: Optional[str] = None,
train_transform: INPUT_TRANSFORM_TYPE = InputTransform,
val_transform: INPUT_TRANSFORM_TYPE = InputTransform,
test_transform: INPUT_TRANSFORM_TYPE = InputTransform,
predict_transform: INPUT_TRANSFORM_TYPE = InputTransform,
input_cls: Type[Input] = TabularClassificationCSVInput,
transform_kwargs: Optional[Dict] = None,
**data_module_kwargs: Any,
) -> "TabularClassificationData":
ds_kw = dict(
data_pipeline_state=DataPipelineState(),
transform_kwargs=transform_kwargs,
input_transforms_registry=cls.input_transforms_registry,
categorical_fields=categorical_fields,
numerical_fields=numerical_fields,
target_fields=target_fields,
parameters=parameters,
)

train_input = input_cls(RunningStage.TRAINING, train_file, transform=train_transform, **ds_kw)

ds_kw["parameters"] = train_input.parameters if train_input else parameters

return cls(
train_input,
input_cls(RunningStage.VALIDATING, val_file, transform=val_transform, **ds_kw),
input_cls(RunningStage.TESTING, test_file, transform=test_transform, **ds_kw),
input_cls(RunningStage.PREDICTING, predict_file, transform=predict_transform, **ds_kw),
**data_module_kwargs,
)
62 changes: 62 additions & 0 deletions flash/tabular/classification/input.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Union

from flash import DataKeys
from flash.core.data.io.classification_input import ClassificationInput
from flash.core.data.utilities.data_frame import read_csv, resolve_targets
from flash.core.utilities.imports import _PANDAS_AVAILABLE
from flash.tabular.input import TabularDataFrameInput

if _PANDAS_AVAILABLE:
from pandas.core.frame import DataFrame
else:
DataFrame = object


class TabularClassificationDataFrameInput(TabularDataFrameInput, ClassificationInput):
def load_data(
self,
data_frame: DataFrame,
categorical_fields: Optional[Union[str, List[str]]] = None,
numerical_fields: Optional[Union[str, List[str]]] = None,
target_fields: Optional[Union[str, List[str]]] = None,
parameters: Dict[str, Any] = None,
):
cat_vars, num_vars = self.preprocess(data_frame, categorical_fields, numerical_fields, parameters)

if not self.predicting:
targets = resolve_targets(data_frame, target_fields)
self.load_target_metadata(targets)
return [{DataKeys.INPUT: (c, n), DataKeys.TARGET: t} for c, n, t in zip(cat_vars, num_vars, targets)]
else:
return [{DataKeys.INPUT: (c, n)} for c, n in zip(cat_vars, num_vars)]

def load_sample(self, sample: Dict[str, Any]) -> Any:
if DataKeys.TARGET in sample:
sample[DataKeys.TARGET] = self.format_target(sample[DataKeys.TARGET])
return sample


class TabularClassificationCSVInput(TabularClassificationDataFrameInput):
def load_data(
self,
file: Optional[str],
categorical_fields: Optional[Union[str, List[str]]] = None,
numerical_fields: Optional[Union[str, List[str]]] = None,
target_fields: Optional[Union[str, List[str]]] = None,
parameters: Dict[str, Any] = None,
):
if file is not None:
return super().load_data(read_csv(file), categorical_fields, numerical_fields, target_fields, parameters)
8 changes: 4 additions & 4 deletions flash/tabular/classification/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ class TabularClassifier(ClassificationAdapterTask):
embedding_sizes: List of (num_classes, emb_dim) to form categorical embeddings.
cat_dims: Number of distinct values for each categorical column
num_features: Number of columns in table
output_dim: Number of classes to classify
num_classes: Number of classes to classify
backbone: name of the model to use
loss_fn: Loss function for training, defaults to cross entropy.
optimizer: Optimizer to use for training.
Expand All @@ -59,7 +59,7 @@ def __init__(
categorical_fields: list,
cat_dims: list,
num_features: int,
output_dim: int,
num_classes: int,
backbone: str = "tabnet",
loss_fn: Callable = F.cross_entropy,
optimizer: OPTIMIZER_TYPE = "Adam",
Expand All @@ -77,7 +77,7 @@ def __init__(
categorical_fields=categorical_fields,
cat_dims=cat_dims,
num_features=num_features,
output_dim=output_dim,
output_dim=num_classes,
backbone=backbone,
backbone_kwargs=backbone_kwargs,
loss_fn=loss_fn,
Expand All @@ -102,7 +102,7 @@ def from_data(cls, datamodule, **kwargs) -> "TabularClassifier":
categorical_fields=datamodule.categorical_fields,
cat_dims=datamodule.cat_dims,
num_features=datamodule.num_features,
output_dim=datamodule.output_dim,
num_classes=datamodule.num_classes,
**kwargs,
)
return model
Expand Down
4 changes: 0 additions & 4 deletions flash/tabular/classification/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,14 +68,10 @@ def _pre_transform(
codes: Dict,
mean: DataFrame,
std: DataFrame,
target: str = None,
target_codes: Dict = None,
) -> DataFrame:
df = _impute(df, num_cols)
df = _normalize(df, num_cols, mean=mean, std=std)
df = _categorize(df, cat_cols, codes=codes)
if target_codes and target:
df = _categorize(df, [target], codes=target_codes)
return df


Expand Down
107 changes: 2 additions & 105 deletions flash/tabular/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,31 +11,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Type, Union
from typing import Any, Dict, List, Optional

from flash.core.data.data_module import DataModule
from flash.core.data.data_pipeline import DataPipelineState
from flash.core.data.io.input import Input
from flash.core.data.io.input_transform import INPUT_TRANSFORM_TYPE, InputTransform
from flash.core.data.io.input_transform import InputTransform
from flash.core.data.io.output_transform import OutputTransform
from flash.core.utilities.imports import _PANDAS_AVAILABLE
from flash.core.utilities.stages import RunningStage
from flash.tabular.input import TabularCSVInput, TabularDataFrameInput

if _PANDAS_AVAILABLE:
from pandas.core.frame import DataFrame
else:
DataFrame = object


class TabularData(DataModule):
"""Data module for tabular tasks."""

input_transform_cls = InputTransform
output_transform_cls = OutputTransform

is_regression: bool = False

@property
def parameters(self) -> Optional[Dict[str, Any]]:
"""The parameters dictionary created from the train data when constructing the ``TabularData`` object."""
Expand Down Expand Up @@ -70,93 +57,3 @@ def embedding_sizes(self) -> list:
# embedding_dimensions = number_of_categories**0.25
emb_dims = [max(int(n ** 0.25), 16) for n in self.cat_dims]
return list(zip(self.cat_dims, emb_dims))

@property
def output_dim(self) -> int:
return self.num_classes if not self.is_regression else 1

@classmethod
def from_data_frame(
cls,
categorical_fields: Optional[Union[str, List[str]]] = None,
numerical_fields: Optional[Union[str, List[str]]] = None,
target_fields: Optional[str] = None,
parameters: Optional[Dict[str, Any]] = None,
train_data_frame: Optional[DataFrame] = None,
val_data_frame: Optional[DataFrame] = None,
test_data_frame: Optional[DataFrame] = None,
predict_data_frame: Optional[DataFrame] = None,
train_transform: INPUT_TRANSFORM_TYPE = InputTransform,
val_transform: INPUT_TRANSFORM_TYPE = InputTransform,
test_transform: INPUT_TRANSFORM_TYPE = InputTransform,
predict_transform: INPUT_TRANSFORM_TYPE = InputTransform,
input_cls: Type[Input] = TabularDataFrameInput,
transform_kwargs: Optional[Dict] = None,
**data_module_kwargs: Any,
) -> "TabularData":

ds_kw = dict(
data_pipeline_state=DataPipelineState(),
transform_kwargs=transform_kwargs,
input_transforms_registry=cls.input_transforms_registry,
categorical_fields=categorical_fields,
numerical_fields=numerical_fields,
target_field=target_fields,
is_regression=cls.is_regression,
parameters=parameters,
)

train_input = input_cls(RunningStage.TRAINING, train_data_frame, transform=train_transform, **ds_kw)

ds_kw["parameters"] = train_input.parameters if train_input else parameters

return cls(
train_input,
input_cls(RunningStage.VALIDATING, val_data_frame, transform=val_transform, **ds_kw),
input_cls(RunningStage.TESTING, test_data_frame, transform=test_transform, **ds_kw),
input_cls(RunningStage.PREDICTING, predict_data_frame, transform=predict_transform, **ds_kw),
**data_module_kwargs,
)

@classmethod
def from_csv(
cls,
categorical_fields: Optional[Union[str, List[str]]] = None,
numerical_fields: Optional[Union[str, List[str]]] = None,
target_fields: Optional[str] = None,
parameters: Optional[Dict[str, Any]] = None,
train_file: Optional[str] = None,
val_file: Optional[str] = None,
test_file: Optional[str] = None,
predict_file: Optional[str] = None,
train_transform: INPUT_TRANSFORM_TYPE = InputTransform,
val_transform: INPUT_TRANSFORM_TYPE = InputTransform,
test_transform: INPUT_TRANSFORM_TYPE = InputTransform,
predict_transform: INPUT_TRANSFORM_TYPE = InputTransform,
input_cls: Type[Input] = TabularCSVInput,
transform_kwargs: Optional[Dict] = None,
**data_module_kwargs: Any,
) -> "TabularData":

ds_kw = dict(
data_pipeline_state=DataPipelineState(),
transform_kwargs=transform_kwargs,
input_transforms_registry=cls.input_transforms_registry,
categorical_fields=categorical_fields,
numerical_fields=numerical_fields,
target_field=target_fields,
is_regression=cls.is_regression,
parameters=parameters,
)

train_input = input_cls(RunningStage.TRAINING, train_file, transform=train_transform, **ds_kw)

ds_kw["parameters"] = train_input.parameters if train_input else parameters

return cls(
train_input,
input_cls(RunningStage.VALIDATING, val_file, transform=val_transform, **ds_kw),
input_cls(RunningStage.TESTING, test_file, transform=test_transform, **ds_kw),
input_cls(RunningStage.PREDICTING, predict_file, transform=predict_transform, **ds_kw),
**data_module_kwargs,
)
Loading

0 comments on commit 428cdb8

Please sign in to comment.