- Put the compressed dataset file "Agriculture-Vision.tar.gz" in data/
-
cd data && tar -xvf Agriculture-Vision.tar.gz
- Generate odgt files in data/ (if you want to use the provided odgts, skip this step)
python gen_odgt.py -r data -d Agriculture-Vision/train -o data/agri-trn.odgt python gen_odgt.py -r data -d Agriculture-Vision/val -o data/agri-val.odgt python gen_odgt.py -r data -d Agriculture-Vision/test -o data/agri-test.odgt -t head -n 100 data/agri-trn.odgt > data/agri-debug.odgt
- Files in data should look like
data |-- Agriculture-Vision | |-- Agriculture-Vision\ Workshop\ Terms\ and\ Conditions.pdf | |-- test | |-- train | `-- val |-- agri-debug.odgt |-- agri-test.odgt |-- agri-trn.odgt `-- agri-val.odgt
./train.sh 0,1 29500 config/agri-resnet101dilated-ibn@a-deeplab-low_feat@[email protected]
python test.py --cfg config/agri-test.yaml
@InProceedings{Yang_2020_CVPR_Workshops,
author = {Yang, Siwei and Yu, Shaozuo and Zhao, Bingchen and Wang, Yin},
title = {Reducing the Feature Divergence of RGB and Near-Infrared Images Using Switchable Normalization},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2020}
}
- Bingchen Zhao proposed the idea of measuring feature divergence between modalities which motivated this research and designed some of the experiments.
- Siwei Yang wrote most of the code and ran part of the experiments to validate the idea.
- Shaozuo Yu shared part of coding and assisted Siwei Yang with some experiments.
- Yin Wang supervises this reseach and provide the resources used by this research.