-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgen_odgt.py
54 lines (42 loc) · 1.77 KB
/
gen_odgt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import json
import os
import os.path as P
import argparse
from tqdm import tqdm
import numpy as np
from PIL import Image
parser = argparse.ArgumentParser(description="Generate odgt for Agri-Vision dataset")
parser.add_argument('--root', '-r')
parser.add_argument('--dataset', '-d')
parser.add_argument('--odgt-path', '-o')
parser.add_argument('--test', '-t', default=False, action='store_true')
args = parser.parse_args()
image_dir = P.join(args.dataset, 'images')
boundary_dir = P.join(args.dataset, 'boundaries')
mask_dir = P.join(args.dataset, 'masks')
label_dir = P.join(args.dataset, 'labels')
# from ipdb import set_trace; set_trace()
filename = [i[:-4] for i in os.listdir(P.join(args.root, image_dir, 'rgb'))]
if not args.test:
classes = os.listdir(P.join(args.root, label_dir))
with open(args.odgt_path, mode='w') as file:
for i in tqdm(filename):
dct = {}
dct['fpath_rgb'] = P.join(image_dir, 'rgb' , i + '.jpg')
dct['fpath_nir'] = P.join(image_dir, 'nir' , i + '.jpg')
dct['fpath_boundary'] = P.join(boundary_dir, i + '.png')
dct['fpath_mask'] = P.join(mask_dir, i + '.png')
if not args.test:
dct['fpath_label'] = {c: P.join(label_dir, c, i + '.png') for c in classes}
labels, _classes = [], []
# import ipdb; ipdb.set_trace()
for class_name, path in dct['fpath_label'].items():
label_img = np.array(Image.open(P.join(args.root, path))) / 255
if label_img.any():
_classes.append(class_name)
labels.append(label_img)
if (~np.sum(labels, axis=0).astype('bool')).any():
_classes.append('background')
dct['classes'] = _classes
json.dump(dct, file)
print(file=file)