Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
implement EscapeAnalysis.jl-powered SROA
Unleashes the potential for SROA of mutables using the novel Julia-level escape analysis (on top of #43800): 1. alias-aware SROA, mutable ϕ-node elimination 2. `isdefined` check elimination 3. load-forwarding for non-eliminable but non-escaping mutables --- 1. alias-aware SROA, mutable ϕ-node elimination EA's alias analysis allows this new SROA to handle nested mutables allocations pretty well. Now we can eliminate the heap allocations completely from this insanely nested examples by the single analysis/optimization pass: ```julia julia> function refs(x) (Ref(Ref(Ref(Ref(Ref(Ref(Ref(Ref(Ref(Ref((x))))))))))))[][][][][][][][][][] end refs (generic function with 1 method) julia> refs("julia"); @allocated refs("julia") 0 ``` EA can also analyze escape of ϕ-node as well as its aliasing. Mutable ϕ-nodes would be eliminated even for a very tricky case as like: ```julia julia> code_typed((Bool,String,)) do cond, x # these allocation form multiple ϕ-nodes if cond ϕ2 = ϕ1 = Ref{Any}("foo") else ϕ2 = ϕ1 = Ref{Any}("bar") end ϕ2[] = x y = ϕ1[] # => x return y end 1-element Vector{Any}: CodeInfo( 1 ─ goto #3 if not cond 2 ─ goto #4 3 ─ nothing::Nothing 4 ┄ return x ) => Any ``` Combined with the powerful alias analysis and ϕ-node handling, the following realistic examples will be fully optimized: ```julia julia> # demonstrate the power of our field / alias analysis with realistic end to end examples # adapted from http://wiki.luajit.org/Allocation-Sinking-Optimization#implementation%5B abstract type AbstractPoint{T} end julia> struct Point{T} <: AbstractPoint{T} x::T y::T end julia> mutable struct MPoint{T} <: AbstractPoint{T} x::T y::T end julia> add(a::P, b::P) where P<:AbstractPoint = P(a.x + b.x, a.y + b.y) add (generic function with 1 method) julia> function compute_point(T, n, ax, ay, bx, by) a = T(ax, ay) b = T(bx, by) for i in 0:(n-1) a = add(add(a, b), b) end a.x, a.y end compute_point (generic function with 2 methods) julia> function compute_point(n, a, b) for i in 0:(n-1) a = add(add(a, b), b) end a.x, a.y end compute_point (generic function with 2 methods) julia> function compute_point!(n, a, b) for i in 0:(n-1) a′ = add(add(a, b), b) a.x = a′.x a.y = a′.y end end compute_point! (generic function with 1 method) julia> compute_point(MPoint, 10, 1+.5, 2+.5, 2+.25, 4+.75); julia> compute_point(MPoint, 10, 1+.5im, 2+.5im, 2+.25im, 4+.75im); julia> @test @allocated(compute_point(MPoint, 10000, 1+.5, 2+.5, 2+.25, 4+.75)) == 0 Test Passed julia> @test @allocated(compute_point(MPoint, 10000, 1+.5im, 2+.5im, 2+.25im, 4+.75im)) == 0 Test Passed julia> compute_point(10, MPoint(1+.5, 2+.5), MPoint(2+.25, 4+.75)); julia> compute_point(10, MPoint(1+.5im, 2+.5im), MPoint(2+.25im, 4+.75im)); julia> @test @allocated(compute_point(10000, MPoint(1+.5, 2+.5), MPoint(2+.25, 4+.75))) == 0 Test Passed julia> @test @allocated(compute_point(10000, MPoint(1+.5im, 2+.5im), MPoint(2+.25im, 4+.75im))) == 0 Test Passed julia> af, bf = MPoint(1+.5, 2+.5), MPoint(2+.25, 4+.75); julia> ac, bc = MPoint(1+.5im, 2+.5im), MPoint(2+.25im, 4+.75im); julia> compute_point!(10, af, bf); julia> compute_point!(10, ac, bc); julia> @test @allocated(compute_point!(10000, af, bf)) == 0 Test Passed julia> @test @allocated(compute_point!(10000, ac, bc)) == 0 Test Passed ``` 2. `isdefined` check elimination This commit also implements a simple optimization to eliminate `isdefined` call by checking load-fowardability. This optimization may be especially useful to eliminate extra allocation involved with a capturing closure, e.g.: ```julia julia> callit(f, args...) = f(args...); julia> function isdefined_elim() local arr::Vector{Any} callit() do arr = Any[] end return arr end; julia> code_typed(isdefined_elim) 1-element Vector{Any}: CodeInfo( 1 ─ %1 = $(Expr(:foreigncall, :(:jl_alloc_array_1d), Vector{Any}, svec(Any, Int64), 0, :(:ccall), Vector{Any}, 0, 0))::Vector{Any} └── goto #3 if not true 2 ─ goto #4 3 ─ $(Expr(:throw_undef_if_not, :arr, false))::Any 4 ┄ return %1 ) => Vector{Any} ``` 3. load-forwarding for non-eliminable but non-escaping mutables EA also allows us to forward loads even when the mutable allocation can't be eliminated but still its fields are known precisely. The load forwarding might be useful since it may derive new type information that succeeding optimization passes can use (or just because it allows simpler code transformations down the load): ```julia julia> code_typed((Bool,String,)) do c, s r = Ref{Any}(s) if c return r[]::String # adce_pass! will further eliminate this type assert call also else return r end end 1-element Vector{Any}: CodeInfo( 1 ─ %1 = %new(Base.RefValue{Any}, s)::Base.RefValue{Any} └── goto #3 if not c 2 ─ return s 3 ─ return %1 ) => Union{Base.RefValue{Any}, String} ``` --- Please refer to the newly added test cases for more examples. Also, EA's alias analysis already succeeds to reason about arrays, and so this EA-based SROA will hopefully be generalized for array SROA as well.
- Loading branch information