Skip to content

Commit

Permalink
Merge pull request #1440 from olyson/masterdoc
Browse files Browse the repository at this point in the history
Updates to Tech Note Photosynthesis chapter

### Description of changes
Updates to photosynthesis chapter in technical note per discussion in #1398.
### Specific notes
Correct some errors and clarify derivation of stomatal conductance quadratic equation for Medlyn method.
Contributors other than yourself, if any: @djk2120 @heraldn

CTSM Issues Fixed (include github issue #):  Documentation aspects of #1398

Are answers expected to change (and if so in what way)? No

Any User Interface Changes (namelist or namelist defaults changes)? No

Testing performed, if any:
I did a local build on the documentation.
  • Loading branch information
billsacks authored Jul 28, 2021
2 parents 01d4cf0 + fcc944e commit 84e970f
Show file tree
Hide file tree
Showing 2 changed files with 51 additions and 39 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -1197,7 +1197,7 @@ The saturated thickness is
\Delta z_{sat} = z_{bedrock} - z_{\nabla},
where the water table :math:`z_{\nabla}` is determined by finding the
irst soil layer above the bedrock depth (section :numref:`Depth to Bedrock`)
first soil layer above the bedrock depth (section :numref:`Depth to Bedrock`)
in which the volumetric water content drops below a specified threshold.
The default threshold is set to 0.9.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,25 +47,27 @@ Stomatal resistance
-----------------------

CLM5 calculates stomatal conductance using the Medlyn stomatal conductance model (:ref:`Medlyn et al. 2011<Medlynetal2011>`).
Previous versions of CLM calculated leaf stomatal resistance is using the Ball-Berry conductance
Previous versions of CLM calculated leaf stomatal resistance using the Ball-Berry conductance
model as described by :ref:`Collatz et al. (1991)<Collatzetal1991>` and implemented in global
climate models (:ref:`Sellers et al. 1996<Sellersetal1996>`). The Medlyn model
calculates stomatal conductance (i.e., the inverse of resistance) based on net leaf
photosynthesis, the vapor pressure deficit, and the CO\ :sub:`2` concentration at the leaf surface.
photosynthesis, the leaf-to-air vapor pressure difference, and the CO\ :sub:`2` concentration at the leaf surface.
Leaf stomatal resistance is:

.. math::
:label: 9.1
\frac{1}{r_{s} } =g_{s} = g_{o} + 1.6(1 + \frac{g_{1} }{\sqrt{D}}) \frac{A_{n} }{{c_{s} \mathord{\left/ {\vphantom {c_{s} P_{atm} }} \right. \kern-\nulldelimiterspace} P_{atm} } }
\frac{1}{r_{s} } =g_{s} = g_{o} + 1.6(1 + \frac{g_{1} }{\sqrt{D_{s}}}) \frac{A_{n} }{{c_{s} \mathord{\left/ {\vphantom {c_{s} P_{atm} }} \right. \kern-\nulldelimiterspace} P_{atm} } }
where :math:`r_{s}` is leaf stomatal resistance (s m\ :sup:`2`
:math:`\mu`\ mol\ :sup:`-1`), :math:`g_{o}` is the minimum stomatal conductance
(:math:`\mu` mol m :sup:`-2` s\ :sup:`-1`), :math:`A_{n}` is leaf net
photosynthesis (:math:`\mu`\ mol CO\ :sub:`2` m\ :sup:`-2`
s\ :sup:`-1`), :math:`c_{s}` is the CO\ :sub:`2` partial
pressure at the leaf surface (Pa), :math:`P_{atm}` is the atmospheric
pressure (Pa), and :math:`D` is the vapor pressure deficit at the leaf surface (kPa).
pressure (Pa), and :math:`D_{s}=(e_{i}-e{_s})/1000` is the leaf-to-air vapor pressure difference at the leaf surface (kPa)
where :math:`e_{i}` is the saturation vapor pressure (Pa) evaluated at the leaf temperature
:math:`T_{v}` , and :math:`e_{s}` is the vapor pressure at the leaf surface (Pa).
:math:`g_{1}` is a plant functional type dependent parameter (:numref:`Table Plant functional type (PFT) stomatal conductance parameters`)
and are the same as those used in the CABLE model (:ref:`de Kauwe et al. 2015 <deKauwe2015>`).

Expand Down Expand Up @@ -153,7 +155,7 @@ describe the implementation, modified here. In its simplest form, leaf
net photosynthesis after accounting for respiration (:math:`R_{d}` ) is

.. math::
:label: 9.3
:label: 9.2
A_{n} =\min \left(A_{c} ,A_{j} ,A_{p} \right)-R_{d} .
Expand All @@ -162,7 +164,7 @@ The RuBP carboxylase (Rubisco) limited rate of carboxylation
s\ :sup:`-1`) is

.. math::
:label: 9.4
:label: 9.3
A_{c} =\left\{\begin{array}{l} {\frac{V_{c\max } \left(c_{i} -\Gamma _{\*} \right)}{c_{i} +K_{c} \left(1+{o_{i} \mathord{\left/ {\vphantom {o_{i} K_{o} }} \right. \kern-\nulldelimiterspace} K_{o} } \right)} \qquad {\rm for\; C}_{{\rm 3}} {\rm \; plants}} \\ {V_{c\max } \qquad \qquad \qquad {\rm for\; C}_{{\rm 4}} {\rm \; plants}} \end{array}\right\}\qquad \qquad c_{i} -\Gamma _{\*} \ge 0.
Expand All @@ -171,7 +173,7 @@ RuBP (i.e., the light-limited rate) :math:`A_{j}` (:math:`\mu` \ mol
CO\ :sub:`2` m\ :sup:`-2` s\ :sup:`-1`) is

.. math::
:label: 9.5
:label: 9.4
A_{j} =\left\{\begin{array}{l} {\frac{J_{x}\left(c_{i} -\Gamma _{\*} \right)}{4c_{i} +8\Gamma _{\*} } \qquad \qquad {\rm for\; C}_{{\rm 3}} {\rm \; plants}} \\ {\alpha (4.6\phi )\qquad \qquad {\rm for\; C}_{{\rm 4}} {\rm \; plants}} \end{array}\right\}\qquad \qquad c_{i} -\Gamma _{\*} \ge 0.
Expand All @@ -181,7 +183,7 @@ C\ :sub:`4` plants :math:`A_{p}` (:math:`\mu` \ mol
CO\ :sub:`2` m\ :sup:`-2` s\ :sup:`-1`) is

.. math::
:label: 9.6
:label: 9.5
A_{p} =\left\{\begin{array}{l} {3T_{p\qquad } \qquad \qquad {\rm for\; C}_{{\rm 3}} {\rm \; plants}} \\ {k_{p} \frac{c_{i} }{P_{atm} } \qquad \qquad \qquad {\rm for\; C}_{{\rm 4}} {\rm \; plants}} \end{array}\right\}.
Expand Down Expand Up @@ -212,7 +214,7 @@ photosynthetically active radiation absorbed by the leaf. A common
expression is the smaller of the two roots of the equation

.. math::
:label: 9.7
:label: 9.6
\Theta _{PSII} J_{x}^{2} -\left(I_{PSII} +J_{\max } \right)J_{x}+I_{PSII} J_{\max } =0
Expand All @@ -227,7 +229,7 @@ with 4.6 :math:`\mu`\ mol J\ :sup:`-1`, the light utilized in
electron transport is

.. math::
:label: 9.8
:label: 9.7
I_{PSII} =0.5\Phi _{PSII} (4.6\phi )
Expand All @@ -244,7 +246,7 @@ The model uses co-limitation as described by :ref:`Collatz et al. (1991, 1992)
smaller root of the equations

.. math::
:label: 9.9
:label: 9.8
\begin{array}{rcl} {\Theta _{cj} A_{i}^{2} -\left(A_{c} +A_{j} \right)A_{i} +A_{c} A_{j} } & {=} & {0} \\ {\Theta _{ip} A^{2} -\left(A_{i} +A_{p} \right)A+A_{i} A_{p} } & {=} & {0} \end{array} .
Expand Down Expand Up @@ -282,19 +284,19 @@ The parameters :math:`V_{c\max 25}`,
:math:`T_{v}` (K), as:

.. math::
:label: 9.10
:label: 9.9
\begin{array}{rcl} {V_{c\max } } & {=} & {V_{c\max 25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {J_{\max } } & {=} & {J_{\max 25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {T_{p} } & {=} & {T_{p25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {R_{d} } & {=} & {R_{d25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {K_{c} } & {=} & {K_{c25} \; f\left(T_{v} \right)} \\ {K_{o} } & {=} & {K_{o25} \; f\left(T_{v} \right)} \\ {\Gamma } & {=} & {\Gamma _{25} \; f\left(T_{v} \right)} \end{array}
.. math::
:label: 9.11
:label: 9.10
f\left(T_{v} \right)=\; \exp \left[\frac{\Delta H_{a} }{298.15\times 0.001R_{gas} } \left(1-\frac{298.15}{T_{v} } \right)\right]
and

.. math::
:label: 9.12
:label: 9.11
f_{H} \left(T_{v} \right)=\frac{1+\exp \left(\frac{298.15\Delta S-\Delta H_{d} }{298.15\times 0.001R_{gas} } \right)}{1+\exp \left(\frac{\Delta ST_{v} -\Delta H_{d} }{0.001R_{gas} T_{v} } \right)} .
Expand All @@ -310,7 +312,7 @@ Because :math:`T_{p}` as implemented here varies with
:math:`V_{c\max}` . For C\ :sub:`4` plants,

.. math::
:label: 9.13
:label: 9.12
\begin{array}{l} {V_{c\max } =V_{c\max 25} \left[\frac{Q_{10} ^{(T_{v} -298.15)/10} }{f_{H} \left(T_{v} \right)f_{L} \left(T_{v} \right)} \right]} \\ {f_{H} \left(T_{v} \right)=1+\exp \left[s_{1} \left(T_{v} -s_{2} \right)\right]} \\ {f_{L} \left(T_{v} \right)=1+\exp \left[s_{3} \left(s_{4} -T_{v} \right)\right]} \end{array}
Expand All @@ -321,15 +323,15 @@ with :math:`Q_{10} =2`,
Additionally,

.. math::
:label: 9.14
:label: 9.13
R_{d} =R_{d25} \left\{\frac{Q_{10} ^{(T_{v} -298.15)/10} }{1+\exp \left[s_{5} \left(T_{v} -s_{6} \right)\right]} \right\}
with :math:`Q_{10} =2`, :math:`s_{5} =1.3`
K\ :sup:`-1` and :math:`s_{6} =328.15`\ K, and

.. math::
:label: 9.15
:label: 9.14
k_{p} =k_{p25} \, Q_{10} ^{(T_{v} -298.15)/10}
Expand Down Expand Up @@ -364,7 +366,7 @@ achieved by allowing :math:`\Delta S`\ to vary with growth temperature
according to

.. math::
:label: 9.16
:label: 9.15
\begin{array}{l} {\Delta S=668.39-1.07(T_{10} -T_{f} )\qquad \qquad {\rm for\; }V_{c\max } } \\ {\Delta S=659.70-0.75(T_{10} -T_{f} )\qquad \qquad {\rm for\; }J_{\max } } \end{array}
Expand All @@ -374,7 +376,7 @@ Additionally, the
ratio :math:`J_{\max 25} /V_{c\max 25}` at 25 :sup:`o`\ C decreases with growth temperature as

.. math::
:label: 9.17
:label: 9.16
J_{\max 25} /V_{c\max 25} =2.59-0.035(T_{10} -T_{f} ).
Expand All @@ -394,7 +396,7 @@ When LUNA is on, the :math:`V_{c\max 25}` for sun leaves is scaled to the shaded


.. math::
:label: 9.18
:label: 9.17
\begin{array}{rcl}
{V_{c\max 25 sha}} & {=} & {V_{c\max 25 sha} \frac{i_{v,sha}}{i_{v,sun}}} \\
Expand All @@ -404,7 +406,7 @@ When LUNA is on, the :math:`V_{c\max 25}` for sun leaves is scaled to the shaded
Where :math:`i_{v,sun}` and :math:`i_{v,sha}` are the leaf-to-canopy scaling coefficients of the twostream radiation model, calculated as

.. math::
:label: 9.19
:label: 9.18
i_{v,sun} = \frac{(1 - e^{-(k_{n,ext}+k_{b,ext})*lai_e)} / (k_{n,ext}+k_{b,ext})}{f_{sun}*lai_e}\\
i_{v,sha} = \frac{(1 - e^{-(k_{n,ext}+k_{b,ext})*lai_e)} / (k_{n,ext}+k_{b,ext})}{(1 - f_{sun})*lai_e}
Expand All @@ -427,14 +429,14 @@ are calculated assuming there is negligible capacity to store
CO\ :sub:`2` and water vapor at the leaf surface so that

.. math::
:label: 9.31
:label: 9.19
A_{n} =\frac{c_{a} -c_{i} }{\left(1.4r_{b} +1.6r_{s} \right)P_{atm} } =\frac{c_{a} -c_{s} }{1.4r_{b} P_{atm} } =\frac{c_{s} -c_{i} }{1.6r_{s} P_{atm} }
and the transpiration fluxes are related as

.. math::
:label: 9.32
:label: 9.20
\frac{e_{a} -e_{i} }{r_{b} +r_{s} } =\frac{e_{a} -e_{s} }{r_{b} } =\frac{e_{s} -e_{i} }{r_{s} }
Expand All @@ -444,21 +446,20 @@ terms 1.4 and 1.6 are the ratios of diffusivity of CO\ :sub:`2` to
H\ :sub:`2`\ O for the leaf boundary layer resistance and stomatal
resistance,
:math:`c_{a} ={\rm CO}_{{\rm 2}} \left({\rm mol\; mol}^{{\rm -1}} \right)`, :math:`P_{atm}`
is the atmospheric CO\ :sub:`2` partial pressure (Pa) calculated
from CO\ :sub:`2` concentration (ppmv), :math:`e_{i}` is the
is the atmospheric pressure (Pa), :math:`e_{i}` is the
saturation vapor pressure (Pa) evaluated at the leaf temperature
:math:`T_{v}` , and :math:`e_{a}` is the vapor pressure of air (Pa).
The vapor pressure of air in the plant canopy :math:`e_{a}` (Pa) is
determined from

.. math::
:label: 9.33
:label: 9.21
e_{a} =\frac{P_{atm} q_{s} }{0.622}
where :math:`q_{s}` is the specific humidity of canopy air (kg
kg\ :sup:`-1`, section :numref:`Sensible and Latent Heat Fluxes and Temperature for Vegetated Surfaces`).
Equations and are solved for
Equations :eq:`9.19` and :eq:`9.20` are solved for
:math:`c_{s}` and :math:`e_{s}`

.. math::
Expand All @@ -471,40 +472,51 @@ Equations and are solved for
e_{s} =\frac{e_{a} r_{s} +e_{i} r_{b} }{r_{b} +r_{s} }
Substitution of equation :eq:`9.35` into equation :eq:`9.1` gives an expression for stomatal
resistance (:math:`r_{s}` ) as a function of photosynthesis
(:math:`A_{n}` ), given here in terms of conductance with
:math:`g_{s} =1/r_{s}` and :math:`g_{b} =1/r_{b}`
In terms of conductance with
:math:`g_{s} =1/r_{s}` and :math:`g_{b} =1/r_{b}`

.. math::
:label: 9.36
g_{s}^{2} + bg_{s} + c = 0
e_{s} =\frac{e_{a} g_{b} +e_{i} g_{s} }{g_{b} +g_{s} } .
where
Substitution of equation :eq:`9.36` into equation :eq:`9.1` gives an expression for the stomatal
resistance
(:math:`r_{s}`) as a function of photosynthesis
(:math:`A_{n}` )

.. math::
:label: 9.37
b = 2(g_{o} * 10^{-6} + d) + \frac{(g_{1}d)^{2}}{g_{b}*10^{-6}D}
ag_{s}^{2} + bg_{s} + c = 0
c = (g_{o}*10^{-6})^{2} + [2g_{o}*10^{-6} + d \frac{1-g_{1}^{2}} {D}]d
where

.. math::
:label: 9.38
\begin{array}{l} a = 1 \\
b = -[2(g_{o} * 10^{-6} + d) + \frac{(g_{1}d)^{2}}{g_{b}*10^{-6}D_{l}}] \\
c = (g_{o}*10^{-6})^{2} + [2g_{o}*10^{-6} + d (1-\frac{g_{1}^{2}} {D_{l}})]d \end{array}
and

.. math::
:label: 9.38
:label: 9.39
d = \frac {1.6 A_{n}} {c_{s} / P_{atm} * 10^{6}}
D = \frac {e_{i} - e_{a}} {1000}
D_{l} = \frac {max(e_{i} - e_{a},50)} {1000}
Stomatal conductance, as solved by equation :eq:`9.36` (mol m :sup:`-2` s :sup:`-1`), is the larger of the two roots that satisfy the
quadratic equation. Values for :math:`c_{i}` are given by

.. math::
:label: 9.39
:label: 9.40
c_{i} =c_{a} -\left(1.4r_{b} +1.6r_{s} \right)P_{atm} A{}_{n}
Expand Down

0 comments on commit 84e970f

Please sign in to comment.