Skip to content

Users and Citations

Elizabeth Hunke edited this page Mar 30, 2021 · 12 revisions

This is a list of institutions that use CICE or parts of it (e.g., EVP, Icepack). The intent is two-fold,

  1. for users to see what others are doing, to help prevent duplications of effort, and
  2. to demonstrate the model's usefulness by documenting its user community and their results.

Please help! The reference list is incomplete. We request citations for peer-reviewed journal articles and PhD theses describing results obtained using the model, along with technical reports that include model development or implementation of CICE (or any part of it). For large efforts such as NCAR's CCSM, we list only those papers that have a polar focus or discuss the sea ice component. Generally speaking, the papers are listed according to the first author's institution, but this is negotiable.

Please send references to your publications using the CICE model to cice-consortium at lanl.gov.


List of Countries

Australia
Belgium
Canada
Chile
China
Denmark
France
Germany
India
Italy
Japan
Korea
New Zealand
Norway
Poland
Russia
Sweden
United Kingdom
United States


United States

Alaska Department of Fish and Game

  • Citta, J. J., Okkonen, S. R., Quakenbush, L. T., Maslowski, W., Osinski, R., George, J. C., . . . Harwood, L. A. Oceanographic characteristics associated with autumn movements of bowhead whales in the Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography. 152, 121-131, 2018.

Argonne National Laboratory

  • J. G. Kim, E. C. Hunke, and W. H. Lipscomb. A sensitivity analysis and parameter tuning scheme for global sea-ice modeling. Ocean Mod., 14:61-80, 2006.

Colorado State University

  • W. R. Cotton, R. A. Pielke Sr., R. L. Walko, G. E. Liston, C. J. Tremback, H. Jiang, R. L. McAnelly, J. Y. Harrington, M. E. Nicholls, G. G. Carrio, and J. P. McFadden. RAMS 2001: Current status and future directions. Meteorol. Atmos. Phys. 82: 5-29, 2003.
  • G. G. Carrio, H. Jiang, W. R. Cotton. Impact of aerosol intrusions on Arctic boundary layer clouds. I. 4 May 1998 case. J. Atmos. Sci. 62, no.9, p.3082-93, 2005.
  • G. G. Carrio, H. Jiang, W. R. Cotton. Impact of aerosol intrusions on Arctic boundary layer clouds. II. Sea ice melting rates. J. Atmos. Sci. 62, no.9, p.3094-105, 2005.

Columbia University

  • G. Krahmann and M. Visbeck. Arctic Ocean sea ice response to Northern Annular Mode-like wind forcing. Geophys. Res. Lett. 30: 1793, doi:10.1029/2003GL017354, 2003. (evp)

Earth and Space Research

  • Padman, Laurie; Kottmeier, Christoph; 2000. High-frequency ice motion and divergence in the Weddell Sea. Journal of Geophysical Research: Oceans, 105, 3379–3400. 10.1029/1999JC900267. http://doi.wiley.com/10.1029/1999JC900267

Florida State University

  • Chassignet, E. P., Yeager, S. G., Fox-Kemper, B., Bozec, A., Castruccio, F., Danabasoglu, G., Horvat, C., Kim, W. M., Koldunov, N., Li, Y., Lin, P., Liu, H., Sein, D. V., Sidorenko, D., Wang, Q., and Xu, X. (2020): Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020.

Georgia Tech

  • J. Liu, Z. Zhang, J. Inoue, R. M. Hortone. Evaluation of snow/ice albedo parameterizations and their impacts on sea ice simulations. Int. J. of Climatol. 27, no.1, p.81-91, 2007.

Lawrence Berkeley Laboratory

Lawrence Livermore National Laboratory

  • P. B. Duffy, M. Eby, and A. J. Weaver. Effects of sinking of salt rejected during formation of sea ice on results of an ocean-atmosphere-sea ice climate model. Geophys. Res. Lett. 26, no.12, p.1739-42, 1999.
  • P. B. Duffy, M. Eby, and A. J. Weaver. Climate Model Simulations of Effects of Increased Atmospheric CO 2 and Loss of Sea Ice on Ocean Salinity and Tracer Uptake J. Clim. 14, 520-532, 2001.
  • D. Ivanova, J. McClean and E. Hunke. Interaction of ocean temperature advection, surface heat fluxes and sea ice in the marginal ice zone during the North Atlantic Oscillation in the 1990s: A modeling study. J. Geophys. Res., 117, C02031, doi:10.1029/2011JC007532, 2012.
  • Cvijanovic, I., Santer, B.D., Bonfils, C. et al. Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s rainfall. Nat Commun 8, 1947 (2017). https://doi.org/10.1038/s41467-017-01907-4

Los Alamos National Laboratory

  • J. Urrego-Blanco, N. Urban, E. Hunke , A. Turner, N. Jeffery. Uncertainty Quantification and Global Sensitivity Analysis of the Los Alamos Sea Ice Model Journal of Geophysical Research - Oceans, 121, DOI:10.1002/2015JC011558, 2016.
  • Urrego-Blanco, J. R., E. C. Hunke, N. M. Urban, N. Jeffery, A. K. Turner, J. R. Langenbrunner, and J. M. Booker. Validation of sea ice models using an uncertainty-based distance metric for multiple model variables, J. Geophys. Res. Oceans, 122, doi:10.1002/2016JC012602, 2017.
  • J. Urrego Blanco, E. Hunke, N. Urban. Emergent relationships among sea ice, longwave radiation and the Beaufort High circulation exposed through parameter uncertainty analysis. Journal of Geophysical Research - Oceans, https://doi.org/10.1029/2019JC014979, 2019.
  • A. K. Turner and E. C. Hunke. Impacts of a mushy-layer thermodynamic approach in global sea-ice simulations using the CICE sea-ice model. J. Geophys. Res. Oceans, 120: 1253–1275. DOI: 10.1002/2014JC010358. LA-UR-14-25975, 2015.
  • A. Roberts, E. Hunke, R. Allard, D. Bailey, A. Craig, J.-F. Lemieux, M. Turner. Quality Control for Community Based Sea Ice Model Development. Phil. Trans. Royal Soc. A, 376: 2017.0344, DOI 10.1098/rsta.2017.0344, 2018.
  • J. G. L. Rae, H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters. Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled Model, Geosci. Model Dev., 8, 2221–2230, doi:10.5194/gmd-8-2221-2015. LA-UR-15-21224, 2015.
  • Jeffery, N., Maltrud, M. E., Hunke, E. C., Wang, S., Wolfe, J., Turner, A. K., et al. Investigating controls on sea ice algal production using E3SMv1.1-BGC. Annals of Glaciology, 1–22, 2020. https://doi.org/10.1017/aog.2020.7, 2020.
  • M. Hecht, M. Veneziani, W. Weijer, B. Kravitz, S. Burrows, D. Comeau, E. Hunke, N. Jeffery, J. Urrego-Blanco, H. Wang, S. Wang, J. Zhang, D. Bailey, C. Mills, P. Rasch, N. Urban. E3SMv0-HiLAT: A Modified Climate System Model Targeted for the Study of High Latitude Processes, JAMES, DOI:10.1029/2018MS001524, 2019.
  • E. C. Hunke and J. K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27:1849-1867, 1997.
  • E. C. Hunke and Y. Zhang. A comparison of sea ice dynamics models at high resolution. Mon. Wea. Rev., 127:396-408, 1999.
  • E. C. Hunke. Viscous-plastic sea ice dynamics with the EVP model: Linearization issues. J. Comput. Phys., 170:18-38, 2001.
  • E. C. Hunke and S. F. Ackley. A numerical investigation of the 1997-98 Ronne Polynya. J. Geophys. Res.--Oceans, 106:22,373–22,382, 2001.
  • W. H. Lipscomb. Remapping the thickness distribution in sea ice models. J. Geophys. Res.–Oceans, 106:13,989-14,000, 2001.
  • E. C. Hunke and J. K. Dukowicz. The Elastic-Viscous-Plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere---Effect of metric terms. Mon. Wea. Rev., 130:1848-1865, 2002.
  • W. H. Lipscomb and E. C. Hunke. Modeling sea ice transport using incremental remapping. Mon. Wea. Rev., 132:1341-1354, 2004.
  • W. H. Lipscomb, E. C. Hunke, W. Maslowski, and J. Jakacki. Improving ridging schemes for high-resolution sea ice models. J. Geophys. Res.--Oceans, 112:C03S91, doi:10.1029/2005JC003355, 2007.
  • E. C. Hunke and M. Holland. Global atmospheric forcing data for Arctic ice-ocean modeling. J. Geophys. Res., 112:C06S14, doi:10.1029/2006JC003640, 2007.
  • E. C. Hunke, M. Maltrud, and M. Hecht. On the grid dependence of lateral mixing parameterizations for global ocean simulations. Ocean Mod., 20:115-133, 2008.
  • E. C. Hunke and C. M. Bitz. Age characteristics in a multidecadal arctic sea ice simulation. J. Geophys. Res., 114:C08013, doi:10.1029/2008JC005186, 2009.
  • E. C. Hunke. Thickness sensitivities in the cice sea ice model. Ocean Mod., 34:137-149, doi:10.1016/j.ocemod.2010.05.004, 2010.
  • E. C. Hunke and D. Comeau. Sea ice and iceberg dynamic interaction. J. Geophys. Res., 116:C05008, doi:10.1029/2010JC006588, 2011.
  • S. Elliott, C. Deal, G. Humphries, E. Hunke, M. Jin N. Jeffery and, M. Levasseur, and J. Stefels. Pan-Arctic simulation of coupled nutrient-sulfur cycling due to sea ice biology. J. Geophys. Res.--- Biogeosciences, 117, doi:10.1029/2011JG001649, 2011.
  • N. Jeffery, E. C. Hunke, and S. M. Elliott. Modeling the transport of passive tracers in sea ice. J. Geophys. Res., 116, C07020, doi:10.1029/2010JC006527, 2011.
  • A. K. Turner, E. C. Hunke and C. M. Bitz. Two modes of sea-ice gravity drainage: a parameterization for large-scale modeling. J. Geophys. Res., 118, 2279--2294, doi:10.1002/jgrc.20171, 2013.
  • E. C. Hunke, D. A. Hebert, O. Lecomte (2013). Level-ice melt ponds in the Los Alamos Sea Ice Model, CICE. Ocean Modelling, 71, 26–42. doi: 10.1016/j.ocemod.2012.11.008. LA-UR-12-21874
  • B. Blazey, M. M. Holland and E. C. Hunke (2013). Arctic Ocean Sea Ice Snow Depth Evaluation and Bias Sensitivity in CCSM. The Cryosphere, 7, 1887–1900, doi:10.5194/tc-7-1887-2013. LA-UR-13-23138
  • E. C. Hunke (2014). Weighing the importance of surface forcing on sea ice—A September 2007 CICE modeling study. Q. J. Roy. Met. Soc., published online, DOI:10.1002/qj.2353. LA-UR-14-21312
  • N. Jeffery and E. C. Hunke (2014). Modeling the winter-spring transition of first-year ice in the western Weddell Sea. J. Geophys. Res., 119, 5891–5920, DOI: 10.1002/2013JC009634.
  • A. P. Craig, S. A. Mickelson, E. C. Hunke and D. A. Bailey. Improved Parallel Performance of the CICE Model in CESM1 (2014). International Journal of High Performance Computing, published online 3 September 2014. DOI: 10.1177/1094342014548771. LA-UR-13-29511
  • E. C. Hunke (2014). Sea ice volume and age: Sensitivity to physical parameterizations and thickness resolution in the CICE sea ice model. Ocean Modelling, 82: 45–59, doi: 10.1016/j.ocemod.2014.08.001. LA-UR-14-21531
  • U. C. Herzfeld, E. C. Hunke, B. W. McDonald and B. F. Wallin (2015). Sea ice deformation in Fram Strait—Comparison of CICE simulations with analysis and classification of airborne remote-sensing data. Cold Regions Science and Technology, 117: 19–33, doi:10.1016/j.coldregions.2015.05.001. LA-UR-14-21838
  • A. K. Turner and E. C. Hunke (2015). Impacts of a mushy-layer thermodynamic approach in global sea-ice simulations using the CICE sea-ice model. J. Geophys. Res. Oceans, 120: 1253–1275. DOI: 10.1002/2014JC010358. LA-UR-14-25975

Massachusetts Institute of Technology

NASA

See https://www.ecco-group.org/publications.htm

NASA Goddard Institute for Space Studies

NASA GSFC

NASA Jet Propulsion Laboratory

  • R. Kwok, E. C. Hunke, W. Maslowski, D. Menemenlis, and J. Zhang. Variability of sea ice simulations assessed with RGPS kinematics. J. Geophys. Res., 113:C11012, doi:10.1029/2008JC004783, 2008.

National Center for Atmospheric Research

See also [http://www2.cesm.ucar.edu/publications/journal the NCAR bibliography]. CICE is included in PCM, CCSM3, CCSM4, CESM1, and CESM2.

  • W. M. Washington, J. W. Weatherly, G. A. Meehl, A. J. Semtner, T. W. Bettge, A. P. Craig, W. G. Strand, J. Arblaster, V. B. Wayland, R. James, et. al. Parallel Climate Model (PCM) control and transient simulations. Clim. Dyn.16, no.10-11, p.755-74, 2000.
  • M. Blackmon (26 authors). The Community Climate System Model. Bull. Amer. Met. Soc., 82:2357-2376, 2001.
  • P. R. Gent, A. P. Craig, C. M. Bitz and J. W. Weatherly. Parameterization improvements in an eddy-permitting ocean model for climate. J. Clim. 15, 1447-1459, 2002.
  • A. Hu, C. Rooth, R. Bleck, and C. Deser. NAO influence on sea ice extent in the Eurasian coastal region. Geophys. Res. Lett. 29: 2053, doi:10.1029/2001GL014293, 2002. (evp)
  • C. Deser, M. Holland, G. Reverdin and M. Timlin. Decadal variations in Labrador Sea ice cover and North Atlantic sea surface temperatures. J. Geophys. Res. 107, No. C5, 3035, 10.1029/2000JC000683, 2002.
  • M. M. Holland and C. M. Bitz. Polar amplification of climate change in coupled models Climate Dynamics 21: 221–232, 2003.
  • M. M. Holland, C. M. Bitz, and E. C. Hunke. Mechanisms forcing an antarctic dipole in simulated sea ice and surface ocean conditions. J. Clim., 18:2052–2066, 2005.
  • C. M. Bitz, M. M. Holland, E. C. Hunke, and R. E. Moritz. Maintenance of the sea-ice edge. J. Clim., 18:2903–2921, 2005.
  • W. D. Collins, C. M. Bitz, M. L. Blackmon, G. B. Bonan, C. S. Bretherton, J. A. Carton, P. Chang, S. C. Doney, J. J. Hack, T. B. Henderson, J. T. Kiehl, W. G. Large, D. S. McKenna, B. D. Santer, and R. D. Smith. The Community Climate System Model Version 3 (CCSM3). J. Clim., 19:2122–2143, 2006.
  • E. DeWeaver, and C. M. Bitz. Atmospheric circulation and Arctic sea ice in CCSM3 at medium and high resolution, J. Climate. Vol. 19, No. 11, pages 2415--2436, 2006.
  • M. M. Holland, C. M. Bitz, E. C. Hunke, W. H. Lipscomb, and J. L. Schramm. Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Clim., 19:2398–2414, 2006.
  • H. Y. Teng, W. M. Washington, G. A. Meehl, L. E. Buja, G. W. Strand, et al. Twenty-first century Arctic climate change in the CCSM3 IPCC scenario simulations. Clim. Dyn. 26, iss.6, p.601-616, 2006.
  • M. M. Holland, C. M. Bitz, and B. Tremblay. Future abrupt reductions in the Summer Arctic sea ice, Geophys. Res. Lett., 33, L23503, doi:10.1029/2006GL028024, 2006.
  • M. M. Holland, J. Finnis, and M. C. Serreze. Simulated Arctic Ocean freshwater budgets in the 20th and 21st centuries, J. Clim., 19, 6221-6242, 2006.
  • M. M. Holland, C. M. Bitz, B. Tremblay, and D. Bailey. The role of natural versus forced change in future rapid summer arctic ice loss. In ''Arctic Sea Ice Decline: observations, projections, mechanisms, and implications'', Eric DeWeaver, C. M. Bitz, and B. Tremblay, editors, p. 133–150. AGU, 2008.
  • J. M. Dennis and H. M. Tufo. Scaling climate simulation applications on IBM blue gene. IBM J. Res. & Dev., 52(1/2):117–126, 2008.
  • G. M. Durner, D. C. Douglas, R. M. Nielsen, S. C. Amstrup, T. L. McDonald, I. Stirling, M. Mauritzen, E. W. Born, Ø. Wiig, E. DeWeaver, M. C. Serreze, S. E. Belikov, M. M. Holland, J. Maslanik, J. Aars, D. A. Bailey, and A. E. Derocher. Predicting 21st century polar bear habitat distribution from global climate models. Ecological Monographs, 79(1), p. 25-58, doi:10.1890/07-2089.1, 2009.
  • R. Kerr, I. Wainer, M. M. Mata. Representation of the Weddell Sea deep water masses in the ocean component of the NCAR-CCSM model. Antarctic Sci. 21, iss.3, p.301-312, 2009.
  • S. C. Amstrup, E. T. DeWeaver, D. C. Douglas, B. G. Marcot, G. M. Durner, C. M. Bitz, and D. A. Bailey. Greenhouse gas mitigation scenarios improve forecasts for polar bears and their sea-ice habitats. Nature, 468, 955-958. doi:10.1038/nature09653, 2010.
  • M. M. Holland, D. A. Bailey, and S. Vavrus. Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3, Clim. Dyn., 36, 1239-1253, doi:10.1007/s00382-010-0792-4, 2011.
  • S. Vavrus, M. M. Holland, and D. A. Bailey. The role of Arctic clouds during intervals of rapid sea ice loss, Clim. Dyn., 36, 1475-1489, 2011.
  • Y. Zhong, G. H. Miller, B. L. Otto-Bliesner, M. M. Holland, D. A. Bailey, D. P. Schneider, and A. Geirsdottir. Centennial-scale climate change from decadally paced explosive volcanism: a coupled sea ice-ocean mechanism. Clim. Dyn., doi:10.1007/s00382-010-0967-z, 2010.
  • L. Landrum, M. M. Holland, D. Schneider, and E. Hunke. Antarctic sea ice variability and change in CCSM4. J. Clim., 25, 4817-4838, 2012.
  • A. Jahn, K. Sterling, M. M. Holland, J. E. Kay, J. A. Maslanik, C. M. Bitz, D. A. Bailey, J. Stroeve, E. C. Hunke, W. H. Lipscomb. Late twentieth century simulation of Arctic sea ice and ocean properties in the CCSM4. J. Clim., 25, 1431-1452, 2012.
  • M. M. Holland, D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Clim., 25, 1413-1430, 2012.
  • P. R. Gent, G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke, S. R. Jayne, D. M. Lawrence, R. B. Neale, P. J. Rasch, M. Vertenstein, P. H. Worley, Z.-L. Yang, and M. Zhang. The Community Climate System Model version 4. J. Clim., 24, 4973-4991, 2011.
  • M. Jochum, A. Jahn, S. Peacock, D. A. Bailey, J. T. Fasullo, J. E. Kay, S. Levis, and B. Otto-Bliesner. True to Milankovitch: Glacial Inception in the new Community Climate System Model. J. Clim., submitted, 2011.
  • C. A. Shields, D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levis, and S. Park. The Low Resolution CCSM4. J. Clim., submitted, 2011.
  • S. J. Vavrus, M. M. Holland, A. Jahn, D. A. Bailey, and B. A. Blazey. 21st-Century Arctic climate change in CCSM4. J. Clim., submitted, 2011.
  • Long, M. C., Lindsay, K., and Holland, M. M. (2015), Modeling photosynthesis in sea ice‐covered waters, J. Adv. Model. Earth Syst., 7, 1189– 1206, doi:10.1002/2015MS000436.
  • Bailey, D. A., Holland, M. M., DuVivier, A. K., Hunke, E. C., Turner, A. K. Impact of a new sea ice thermodynamic formulation in the CESM2 sea ice component. Journal of Advances in Modeling Earth Systems, 12, e2020MS002154. https://doi.org/10.1029/2020MS002154, 2020.
  • E. Brady, S. Stevenson, D. Bailey, Z. Liu, D. Noone, J. Nusbaumer, B. L. Otto-Bliesner, C. Tabor, R. Tomas, T. Wong, J. Zhang, and J. Zhu. The connected isotopic water cycle in the community earth system model version 1. J. Adv. Modeling Earth Sys., 11(8):2547–2566, 2019.
  • DuVivier, A. K., Holland, M. M., Kay, J. E., Tilmes, S., Gettelman, A., & Bailey, D. A. (2020). Arctic and Antarctic sea ice mean state in the Community Earth System Model Version 2 and the influence of atmospheric chemistry. Journal of Geophysical Research: Oceans, 125, e2019JC015934. https://doi.org/10.1029/2019JC015934
  • Singh, H. K. A., Landrum, L., Holland, M. M., Bailey, D. A., & DuVivier, A. K. (2021). An overview of Antarctic sea ice in the Community Earth System Model version 2, part I: Analysis of the seasonal cycle in the context of sea ice thermodynamics and coupled atmosphere‐ocean‐ice processes. Journal of Advances in Modeling Earth Systems, 12, e2020MS002143. https://doi.org/10.1029/2020MS002143. https://doi.org/10.1029/2020MS002143

National Ice Center

National Snow and Ice Data Center

Naval Postgraduate School

  • Clement Kinney, J., Maslowski, W., Osinski, R., Jin, M., Frants, M., Jeffery, N., & Lee, Y. J. Hidden Production: On the Importance of Pelagic Phytoplankton Blooms Beneath Arctic Sea Ice. Journal of Geophysical Research: Oceans, 125(9). doi:10.1029/2020jc016211, 2020.
  • Y. Zhang, W. Maslowski, and A. J. Semtner. Impact of mesoscale ocean currents on sea ice in high-resolution Arctic ice and ocean simulations. J. Geophys. Res. 104, NO. C8, 18,409-18,429, 1999.
  • Y. Zhang and E. C. Hunke. Recent Arctic change simulated with a coupled ice-ocean model. J. Geophys. Res., 106:4369–4390, 2001.
  • Y. X. Zhang and A. J. Semtner. The Antarctic Circumpolar Wave in a global, high-resolution, coupled ice-ocean model. Ann. Glaciol. 33, p.539-544, 2001.
  • W. Maslowski and W. H. Lipscomb. High resolution simulations of Arctic sea ice, 1979–1993. Polar Res., 22:67–74, 2003.
  • T. G. Prasad, J. L. McLean, E. C. Hunke, A. J. Semtner, and D. Ivanova. A numerical study of the western cosmonaut polynya in a coupled ocean-sea ice model. J. Geophys. Res., 110:C10008, doi:10.1029/2004JC002858, 2005.
  • W. Maslowski, J. C. Kinney, M. Higgins, and A. Roberts. The Future of Arctic Sea Ice. Annual Review of Earth and Planetary Sciences, 40, 625-654, 2012.
  • Roberts, A. F., Craig, A., Maslowski, W., Osinski, R., Duvivier, A., Hughes, M., et al. (2015). Simulating transient ice-ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model. Annals of Glaciology, 56(69), 211–228. https://doi.org/10.3189/2015AoG69A760

Naval Research Lab, Stennis Space Center

  • M. Yaremchuk., T. Townsend, G. Panteleev, D. Hebert, and R. Allard. Advancing short-term forecast of ice conditions in the Beaufort Sea. Journal of Geophysical Research: Oceans, 124, 807-820. https:// doi.org/10.1029/ 2018JC014581, 2019.
  • R. A. Allard, S. Farrell, D. Hebert, W. Johnston, L. Li, N. Kurtz, M. W. Phelps, P. G. Posey, R. Tilling, A. Ridout, and A. J. Wallcraft. Utilizing CyroSat-2 Sea Ice Thickness to Initialize a Coupled Ice-Ocean Modeling System. Adv. Space Res. 62(6), 1265-1280, https://doi.org/10.1016/j.asr.2017.12.030, 2018.
  • R. A. Allard, N. Barton, N. Kurtz, L. Li, E.J. Metzger, M. Phelps, O.M. Smedstad, and J. Crout “Impact of CryoSat-2 Ice Thickness Initialization on Seasonal Arctic Prediction”, Annals of Glaciology, Volume 61, Issue 82, pp. 78 – 85, DOI: https://doi.org/10.1017/aog.2020.15., 2020.
  • Barton, N. Janiga, J. McLay, J, C. Reynolds, C. Rowley, P. Hogan, and P. Thoppil. Earth system prediction capability (ESPC) initial operational capability (IOC) ensemble system (Tech. Rep. NRL/MR/7532‐19‐9928). Washington, D.C: Naval Research Laboratory, 2019.
  • D. A. Hebert, R. A. Allard, E. J. Metzger, P. G. Posey, R. H. Preller, A. J. Wallcraft, M. W. Phelps, and O. M. Smedstad. Short-term sea ice forecasting: An assessment of ice concentration and ice drift forecasts using the U.S. Navy’s Arctic Cap Nowcast/Forecast System, J. Geophys. Res. Oceans, 120, 8327–8345, doi:10.1002/2015JC011283, 2015.
  • E. J. Metzger, P. J. Hogan, J. F. Shriver, P. G. Thoppil, E. Douglass, Z. Yu, R. A. Allard, C. D. Rowley, O. M. Smedstad, D. S. Franklin, M. W. Phelps, L. Zamudio, A. J. Wallcraft, and J. R. Richman. Validation Test Report for the Global Ocean Forecast System 3.5 1/25 HYCOM/CICE with Tides”, NRL-MR-7323-2019-9975, 2019.
  • P. G. Posey, E. J. Metzger, A .J. Wallcraft, D. Hebert, R. A. Allard, O. M. Smedstad, M. W. Phelps, F. Fetterer, S.J. Stewart, W. Meier and S.R. Helfrich. Improving Arctic sea ice edge forecasts by assimilating high horizontal resolution sea ice concentration data into the US Navy’s ice forecast systems., The Cryosphere, Vol. 9, pp 1735-1745, http://www.the-cryosphere.net/9/1735/2015/tc-9-1735-2015.html, 2015.
  • N. Barton, E. J. Metzger, C. A. Reynolds, B. Ruston, C. Rowley, O. M. Smedstad, J. A. Ridout, A. Wallcraft, S. Frolov, P. Hogan, M. A. Janiga, J. Shriver, J. McLay, P. Thoppil, A. Huang, W. Crawford, T. Whitcomb, C. Bishop, L. Zamudio, and M. Phelps. The Navy’s Earth System Prediction Capability: a new global coupled atmosphere-ocean-sea ice prediction system designed for daily to subseasonal forecasting. Earth and Space Science, https://doi.org/10.1029/2020EA001199, 2020.
  • P. G. Posey, E. J. Metzger, A. J. Wallcraft, O. M. Smedstad, and M. W. Phelps. Real-time data assimilation of ice concentration into a coupled ice/ocean forecast system. Oceans p. 4, 2009.
  • P. G. Posey, E. J. Metzger, A. J. Wallcraft, R. H. Preller, O. M. Smedstad, and M. W. Phelps. Validation of the 1/12^o^ Arctic Cap Nowcast/Forecast System (ACNFS), NRL Stennis Space Center, August 2010.
  • P. G. Posey, D. A. Hebert, E. J. Metzger, A. J. Wallcraft, J. A. Cummings, R. H. Preller, O. M. Smedstad, and M. W. Phelps. Real-time data assimilation of satellite derived ice concentration into a coupled ice/ocean forecast system. Oceans p. 1-4, 2011.
  • E. J. Metzger, P. G. Posey, P. G. Thoppil, T. L. Townsend and A. J. Wallcraft, 2015: Validation Test Report for the Global Ocean Forecast System 3.1 - 1/12° HYCOM/NCODA/CICE/ISOP. NRL Report NRL/MR/7320--15-9579
  • G. Panteleev, M. Yaremchuk, J. Stroh, P. Posey, D. Hebert and D. Nechaev, 2015: Optimization of the High-Frequency Radar Sites in the Bering Strait Region. Journal of Atmosheric and Oceanic Technology vol 32 doi:10.1175/JTECH-D-14-00071.1
  • J. W. Crout and P. G. Posey, 2015: Validation Test Report for the Arctic Cap Nowcast/Forecast System as a Fractures/Leads and Polynyas Product. NRL Report NRL/MR/7320--15-9590
  • P. G. Posey, E. J. Metzger, A. J. Wallcraft, D. A. Hebert, R. A. Allard, O. M. Smedstad, M. W. Phelps, F. Fetter, J. S. Stewart, W. N. Meier, and S. R. Helfrich, 2015: Improving Arctic sea ice edge forecasts by assimilating high horizontal resolution sea ice concentration data into the US Navy's ice forecast systems. The Cryosphere vol 9 1735-1745
  • E. J. Metzger, O. M. Smedstad, P. G. Thoppil, H. E. Hurlburt, J. A. Cummings, A. J. Wallcraft, L. Zamudio, D. S. Franklin, P. G. Posey, M. W. Phelps, P. J. Hogan, F. L. Bub and C. J. Dehaan, 2014: US Navy Operational Global Ocean and Arctic Ice Prediction Systems. Oceanography vol 27 3, http://dx.doi.org/10.5670/oceanog.2014.66
  • F. L. Bub, A. C. Mask, K. R. Wood, D. G. Krynen, B. N. Lunde, C. J. Dehaan, E. J. Metzger, P. G. Posey and J. A. Wallmark, 2014: The Navy's Application of Ocean Forecasting to Decision Support. Oceanography vol 27 3, doi:10.5670/oceanog.2014.74
  • E. J. Metzger, A. J. Wallcraft, P. G. Posey, O. M. Smedstad and D. S. Franklin, 2013: The Switchover from NOGAPS to NAVGEM 1.1 Atmospheric Forcing in GOFS and ACNFS. NRL Report NRL/MR/7320--13-9486
  • P. Posey, R. Allard, E. J. Metzger, A. Wallcraft, R. Preller, D. Hebert, M. Phelps and O. M. Smedstad, 2012: NRL-SSC Transitions New Ice Model to Navy. NRL News Release
  • P. G. Posey, D. A. Hebert, E. J. Metzger, A. J. Wallcraft, J. A. Cummings, R. H. Preller, O. M. Smedstad and M. W. Phelps, 2011: Real-time Data Assimilation of Satellite Derived Ice Concentration into the Arctic Cap Nowcast/Forecast System (ACNFS). MTS/IEEE Conference Oceans '11
  • P. G. Posey, E. J. Metzger, A. J. Wallcraft, R. H. Preller, O. M. Smedstad and M. W. Phelps, 2010: Validation of the 1/12 Arctic Cap Nowcast/Forecast System (ACNFS). NRL Report NRL/MR/7320--10-9287

New York University

NOAA Geophysical Fluid Dynamics Laboratory

  • M. Winton. FMS Sea Ice Simulator. GFDL Tech. Rep. 2001
  • M. Winton. On the climatic impact of ocean circulation. J. Clim.16, p.2875-2889, 2003.
  • S. M. Griffies, A. Gnanadesikan, K. W. Dixon, J. P. Dunne, R. Gerdes, M. J. Harrison, A. Rosati, J. L. Russell, B. L. Samuels, M. J. Spelman, M. Winton, and R. Zhang. Formulation of an ocean model for global climate simulations, Ocean Sci., 1, 45-79, doi:10.5194/os-1-45-2005, 2005.
  • A. Gnanadesikan, K. W. Dixon, S. M. Griffies, V. Balaji, M. Barreiro, et al. GFDL's CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Clim. 19, p.675-697, 2006.

NOAA Great Lakes Environmental Research Laboratory

NOAA National Centers for Environmental Prediction (NCEP)

  • S. Suranjana et al. The NCEP climate forecast system reanalysis. Bull. Amer. Meteorol. Soc., p 1015-1057. Doi: 10.1175/2010Bams3001.1, 2010. (evp)

North Carolina State University

  • G. Peng, J. L. Matthews, M. Wang, R. Vose and L. Sun. What Do Global Climate Models Tell Us about Future Arctic Sea Ice Coverage Changes? Climate 2020, 8(1), 15; https://doi.org/10.3390/cli8010015.

Old Dominion University

  • Husrevoglu, Y. Sinan. Modelling the Seasonal Sea Ice Cycle in the Ross Sea, Antarctica. Ph.D. thesis, Old Dominion University, Department of Ocean, Earth and Atmospheric Sciences, 156 pp., 2008.

Oak Ridge National Laboratory

  • J. B. Drake, P. W. Jones, G. R. Carr. Overview of the software design of the Community Climate System Model. Int. J. High Perf. Comp. Appl. 19, iss.3, p.177-186, 2005.

Pacific Northwest National Laboratory

  • S. Burrows, and co-authors (30 authors). The DOE E3SM v1.1 biogeochemistry configuration: Description and simulated ecosystem-climate responses to historical changes in forcing. Journal of Advances in Modeling Earth Systems, 12, e2019MS001766. https://doi.org/10.1029/2019MS001766, 2020.
  • O. A. Garuba, H. A. Singh, E. Hunke, P. Rasch. Disentangling the coupled atmosphere-ocean-ice interactions driving Arctic sea ice response to CO2 increases. JAMES, DOI: 10.1029/2019MS001902, 2020.

Rutgers University

  • D. B. Haidvogel, H. Arango, W. P. Budgell, B. D. Cornuelle, E. Curchitser, et al. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comp. Phys.227, iss.7, p.3595-3624, 2008. (ROMS - EVP)

Sandia National Laboratory

Scripps Institution of Oceanography

  • D. W. Pierce. The role of sea surface temperatures in interactions between ENSO and the North Pacific Oscillation. J. Clim. 15, p.1295-308, 2002.
  • D. W. Pierce, T. P. Barnett, R. Tokmakian, A. Semtner, M. Maltrud, J. Lysne, A. Craig. The ACPI project, element 1: Initializing a coupled climate model from observed conditions. Clim. Change 62, p.13-28, 2004.
  • D. W. Pierce. Future changes in biological activity in the North Pacific due to anthropogenic forcing of the physical environment. Clim. Change 62, 389-418, 2004.

Stanford University

University of Alaska, Fairbanks

  • M. Jin, C. Deal, W. Maslowski, P. Matrai, A. Roberts, R. Osinski, Y. J. Lee, M. Frants, S. Elliott, N. Jeffery, E. Hunke, S. Wang. Effects of model resolution and ocean mixing on forced ice-ocean physical and biogeochemical simulations using global and regional system models. J. Geophys. Res. Oceans, DOI: 10.1002/2017JC013365, 2018.
  • C. Deal, M. Jin, S. Elliott, E. Hunke, M. Maltrud, and N. Jeffery. Large-scale modeling of primary production and ice algal biomass within arctic sea ice in 1992. J. Geophys. Res., 116, C07004, doi:10.1029/2010JC006409, 2011.
  • M. Jin, C. Deal, S. H. Lee, S. Elliott, E. Hunke, M. Maltrud, and N. Jeffery. Investigation of arctic sea ice and ocean primary production in a global ice-ocean ecosystem model. Deep Sea Res. II, 81-84: 28-35, doi: 10.1016/j.dsr2.2011.06.003, 2012.
  • Webster, M. A., DuVivier, A. K., Holland, M. M., & Bailey, D. A. (2021). Snow on arctic sea ice in a warming climate as simulated in CESM. Journal of Geophysical Research: Oceans, 126, e2020JC016308. https://doi.org/10.1029/2020JC016308.
  • Oggier, Marc; Eicken, Hajo; Jin, Meibing; Høyland, Knut; 2020. Seasonal and interannual variability of sea-ice state variables: Observations and predictions for landfast ice in northern Alaska and Svalbard. The Cryosphere. https://www.the-cryosphere-discuss.net/tc-2020-52/

University of California, Irvine

  • C. Strong, G. Magnusdottir. Modeled boreal winter sea ice variability and the North Atlantic Oscillation: a multi-century perspective. Climate Dynamics, 34, 515-525, 2010.
  • Dang, Cheng; Zender, Charles S.; Flanner, Mark G.; 2019. Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces. The Cryosphere, 13, 2325–2343. 10.5194/tc-13-2325-2019. https://www.the-cryosphere.net/13/2325/2019/. https://www.the-cryosphere-discuss.net/tc-2019-22/tc-2019-22.pdf

University of California, Los Angeles

University of California, San Diego

University of California, Santa Cruz

  • M. Bougamont, E. C. Hunke, and S. Tulaczyk. Sensitivity of ocean circulation to the disintegration of West Antarctic ice shelves and ice sheet. J. Glaciol., 53:490–498, 2007.

University of Colorado, Boulder

  • U. C. Herzfeld, E. C. Hunke, B. W. McDonald and B. F. Wallin. Sea ice deformation in Fram Strait—Comparison of CICE simulations with analysis and classification of airborne remote-sensing data. Cold Regions Science and Technology, 117: 19–33, doi:10.1016/j.coldregions.2015.05.001. LA-UR-14-21838, 2015.
  • DuVivier, A. K., Cassano, J. J., Craig, A., Hamman, J., Maslowski, W., Nijssen, B., . . . , R. Osinski, Roberts, A. Winter Atmospheric Buoyancy Forcing and Oceanic Response during Strong Wind Events around Southeastern Greenland in the Regional Arctic System Model (RASM) for 1990–2010*. Journal of Climate, 29(3), 975-994. doi:10.1175/jcli-d-15-0592.1, 2016.
  • Cassano, J. J., DuVivier, A., Roberts, A., Hughes, M., Seefeldt, M., Brunke, M., . . . R.Osinski, Zeng, X. Development of the Regional Arctic System Model (RASM): Near-Surface Atmospheric Climate Sensitivity. Journal of Climate, 30(15), 5729-5753. doi:10.1175/jcli-d-15-0775.1, 2017.
  • T. E. Arbetter, J. A. Curry, and J. A. Maslanik. Effects of rheology and ice thickness distribution in a dynamic-thermodynamic sea ice model. J. Phys. Oceanogr., 29:2656–2670, 1999. (evp)
  • D. A. Bailey, A. H. Lynch. Antarctic regional modelling of atmospheric, sea-ice and oceanic processes and validation with observations. Ann. of Glaciol. 31, p.348-52, 2000.
  • A. H. Lynch, J. A. Maslanik and W. Wu. Mechanisms in the development of anomalous sea ice extent in the western Arctic: A case study. J. Geophys. Res. 106, No. D22, p. 28,097–28,105, 2001.
  • B. Blazey and M. M. Holland and E. C. Hunke. Arctic Ocean Sea Ice Snow Depth Evaluation and Bias Sensitivity in CCSM. The Cryosphere, accepted.
  • Kelly Kochanski, Ivana Cvijanovic, Donald Lucas, 2020. Surrogate sea ice model enables efficient tuning. https://arxiv.org/abs/2006.12977

University of Delaware

University of Illinois at Urbana-Champaign

  • X.-Z. Liang, J. Pan, K. E. Kunkel, J. X. L. Wang, E. C. Hunke, and W. H. Lipscomb, 2004. Coupling the CWRF with the CICE for Arctic climate applications. In Proceedings of 5th WRF/14th MM5 User's Workshop, Boulder, CO, June 22-25, p. 215-220.

University of Massachusetts

  • G. Gao, C. Chen, J. Qi and R. C. Beardsley. An unstructured-grid, finite-volume sea ice model: Development, validation, and application. J. Geophys. Res., 116, C00D04, doi:10.1029/2010JC006688, 2011.

University of Miami

University of Michigan

University of New Mexico

University of Texas at San Antonio

University of Utah

University of Washington

  • C. M. Bitz, M. M. Holland, E. Hunke, and R. E. Moritz. Maintenance of the sea-ice edge, J. Climate, 18, 2903-2921, 2005.
  • C. M. Bitz, P. R. Gent, R. A. Woodgate, M. M. Holland, and R. Lindsay. The influence of sea ice on ocean heat uptake in response to increasing CO2, J. Climate, Vol. 19, No. 11, pages 2437-2450, 2006.
  • C. M. Bitz. Some aspects of uncertainty in predicting sea ice retreat, in Arctic Sea Ice Decline: observations, projections, mechanisms, and implications, AGU Geophysical Monograph Series, edited by E. DeWeaver, C. M. Bitz, and B. Tremblay, p. 63-76, American Geophysical Union, 2008.
  • C. Kirkman and C.M. Bitz. The effect of the sea ice freshwater flux on Southern Ocean temperatures in CCSM3: Deep ocean warming and delayed surface warming, J. Climate, 24, p. 2224-2237 doi:10.1175/2010JCLI3625, 2011.
  • E. Blanchard-Wrigglesworth, K. Armour, C. M. Bitz, and E. DeWeaver. Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations, J. Climate, doi:10.1175/2010JCLI3775.1, 2011.
  • K. Armour, C. M. Bitz, L. Thompson and E. C. Hunke. Controls on Arctic sea ice from first-year and multi-year ice survivability, 24, p. 2378-2390, doi:10.1175/2010JCLI3823.1, 2011.
  • E. Blanchard-Wrigglesworth, C. M. Bitz, and M. M. Holland. Influence of Initial Conditions and Climate Forcing on Predicting Arctic Sea Ice, Geophys. Res. Lett. 38, L18503, doi:10.1029/2011GL048807, 2011.
  • K. C. Armour, I. Eisenman, E. Blanchard-Wrigglesworth, K. E. McCusker, and C. M. Bitz. The reversibility of sea ice loss in a state-of-the-art climate model, 38, L16705, doi:10.1029/2011GL048739, 2011.
  • K. E McCusker, D. S. Battisti, and C. M. Bitz. The Climate Response to Stratospheric Sulfate Injections and Implications for Addressing Climate Emergencies. J. Climate, 25, 3096–3116, 2012.
  • B. Kirtman, C. M. Bitz, F. Bryan, W. Collins, J. Dennis, N. Hearn, J. L. Kinter III, R. Loft, C. Rousset, L. Siqueira, Cr. Stan, R. Tomas, and M. Vertenstein. Impact of Ocean Model Resolution on CCSM Climate Simulations, Climate Dynamics, in press, 2012.
  • C. M. Bitz, K. M. Shell, P. R. Gent, D. A. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate Sensitivity of the Community Climate System Model Version 4, J. Climate, 25, 3053–3070, doi:10.1175/JCLI-D-11-00290.1, 2012
  • Hamman, J., Nijssen, B., Brunke, M., Cassano, J., Craig, A., DuVivier, A., . . .Roberts, A., Osinski, R., Zeng, X. Land Surface Climate in the Regional Arctic System Model. Journal of Climate, 29(18), 6543-6562. doi:10.1175/jcli-d-15-0415.1, 2016.
  • Hamman, J., Nijssen, B., Roberts, A., Craig, A., Maslowski, W., & Osinski, R. The coastal streamflow flux in the Regional Arctic System Model. Journal of Geophysical Research: Oceans, 122(3), 1683-1701. doi:10.1002/2016jc012323, 2017.
  • Zhang, Yong-Fei; Bitz, Cecilia M.; Anderson, Jeffrey L.; Collins, Nancy S.; Hoar, Timothy J.; Raeder, Kevin D.; Blanchard-Wrigglesworth, Edward; 2020. Estimating Parameters in a Sea Ice Model using an Ensemble Kalman Filter. https://www.the-cryosphere-discuss.net/tc-2020-96/
  • Jun Zhai, Cecilia Bitz, A machine learning model of Arctic sea ice motions, 2020. Earth and Space Science Open Archive 10.1002/essoar.10504769.1 https://doi.org/10.1002/essoar.10504769.1

U.S. Army Cold Reg. Res. and Engineer. Lab.

  • J. W. Weatherly and Y. Zhang. The Response of the Polar Regions to Increased CO 2 in a Global Climate Model with Elastic–Viscous–Plastic Sea Ice. J. Clim. 14: 268-283, 2001. (evp)

Woods Hole Oceanographic Institution


Argentina

Argentine Naval Hydrographic Service


Australia

CSIRO

  • D. Bi and S. Marsland. Australian Climate Ocean Model (AusCOM) Users Guide. CAWCR Technical Report No. 027. August 2010.
  • P. Uotila, S. O'Farrell, S. J. Marsland and D. Bi. A sea-ice sensitivity study with a global ocean-ice model. Ocean Modelling, 51, p. 1-18, 2012.
  • K. Lorbacher, S. J. Marsland, J. A. Church, S. M. Griffies, and D. Stammer. Rapid barotropic sea level rise from ice sheet melting, J. Geophys. Res., 117, C06003, doi:10.1029/2011JC007733, 2012.
  • Bi, D., Marsland, S., Uotila, P., O'Farrell, S., Fiedler, R., Sullivam, A., Griffies, S., Zhou, X. and Hirst, A., ACCESS-OM: the ocean and sea-ice core of the ACCESS coupled model, Aust. Met. Oceanogr. J., 63(1), 213-232, 2013.
  • Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Hirst, A., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N., Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R., Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S., Hill, R., Harris, C. and Puri, K., The ACCESS coupled model: description, control climate and evaluation, Aust. Met. Oceanogr. J., 63(1), 41-64, 2013.
  • Dix, M., Vohralik, P., Bi, D., Rashid, H., Marsland, S., O'Farrell, S., Uotila, P., Hirst, T., Kowalczyk, E., Sullivan, A., Yan, H., Franklin, C., Sun, Z., Watterson, I., Collier, M., Noonan, J., Rotstayn, L., Stevens, L., Uhe, P. and Puri, K., The ACCESS coupled model: documentation of core CMIP5 simulations and initial results, Aust. Met. Oceanogr. J., 63(1), 83-99, 2013.
  • Marsland, S.J., D. Bi, P. Uotila, R. Fiedler, S. M. Griffies, K. Lorbacher, S. O’Farrell, A. Sullivan, P. Uhe, X. Zhou, A. C. Hirst, Evaluation of ACCESS Climate Model ocean diagnostics in CMIP5 simulations, Aust. Met. Oceanogr. J., 63(1), 101-119, 2013.
  • Uotila, P., O'Farrell, S., Marsland, S. and Bi, D., The sea-ice performance of the Australian climate models participating in the CMIP5, Aust. Met. Oceanogr. J., 63(1), 121-143, 2013.
  • Downes, S.M., R. Farneti, P. Uotila, S.M. Griffies, S.J. Marsland, D. Bailey, E. Behrens, M. Bentsen, D. Bi, A. Biastoch, C. Boening, A. Bozec, V.M. Canuto, E. Chassignet, G. Danabasoglu, S. Danilov, N. Diansky, H. Drange, P. Giuseppe Fogli, A. Gusev, A. Howard, M. Ilicak, T. Jung, M. Kelley, W.G. Large, A. Leboissetier, M. Long, J. Lu, S. Masina, A. Mishra, A. Navarra, A.J. George Nurser, L. Patara, B.L. Samuels, D. Sidorenko, P. Spence, H. Tsujino, Q. Wang, S.G. Yeager, An assessment of Southern Ocean water masses and sea ice during 1988-2007 in a suite of inter-annual CORE-II simulations, Ocean Modelling, 2015, 94, 67-94. doi:10.1016/j.ocemod.2015.07.022
  • Uotila, P., Holland, P.R., Vihma, T., Marsland, S.J., Kimura, N., Is realistic Antarctic sea ice extent in climate models the result of excessive ice drift?, Ocean Modelling (2014), doi: http://dx.doi.org/10.1016/j.ocemod.2014.04.004

National Computational Infrastructure

Monash University

University of New South Wales

University of Tasmania

  • R. P. Stevens and P. Heil. The interplay of dynamic and thermodynamic processes in driving the ice-edge location in the Southern Ocean. Ann. Glaciol. 52, iss.57, pt.1, p.27-34, 2011.

Belgium

Universite´ Catholique de Louvain, Belgium

  • S. Bouillon, M. A. M. Maqueda, V. Legat, T. Fichefet. An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids. Ocean Mod. 27, iss.3-4, p.174-184, 2009.
  • M. Vancoppenolle, T. Fichefet, H. Goosse, S. Bouillon, G. Madec, and M. A. Morales Maqueda. Simulating the mass balance and salinity of arctic and antarctic sea ice. 1. model description and validation. Ocean Mod., 27:33–53, 2009.

Brazil

University of Sao Paolo


Canada

Dalhousie University

Environment Canada

  • A. Shlyaeva, M. Buehner, A. Caya, J.F. Lemieux, G.C. Smith, F. Dupont and T. Carrieres. Towards ensemble data assimilation for the Environment Canada Regional Ice Prediction System. Quarterly Journal of the Royal Meteorological Society, 142: 1090-1099, DOI:10.1002/qj.2712, 2015.
  • H. Lin, W.J. Merryfield, R. Muncaster, G.C. Smith, M. Markovic, F. Dupont, F.Roy, J.F. Lemieux, A. Dirkson, V.V. Kharin, W.S. Lee, M. Charron and A. Erfani. The Canadian Seasonal to Interannual Prediction System Version 2 (CanSIPSv2), Weather and Forecasting, 35 (4), 1317-1343.DOI: https://doi.org/10.1175/WAF-D-19-0259.1, 2020.
  • J.F. Lemieux, J. Lei, F. Dupont, F. Roy, M. Losch, C. Lique and F. Laliberté. The impact of tides on simulated landfast ice in a Pan-Arctic ice-ocean model. J. Geophys. Res. Oceans, 123, https://doi.org/10.1029/2018JC014080, 2018.
  • J.F. Lemieux, F. Dupont, P. Blain, F. Roy, G.C. Smith, and G.M. Flato. Improving the simulation of landfast ice by combining tensile strength and a parameterization for grounded ridges. J. Geophys. Res. Oceans, 121:7354–7368, http://dx.doi.org/10.1002/2016JC012006, 2016.
  • J.F. Lemieux, C. Beaudoin, F. Dupont, F. Roy, G.C. Smith, A. Shlyaeva, M. Buehner, A. Caya,, J. Chen, T. Carrieres, L. Pogson, P. DeRepentigny, A. Plante, P. Pestieau, P. Pellerin, H. Ritchie, G. Garric and N. Ferry. The Regional Ice Prediction System (RIPS): verification of forecast sea ice concentration. Quarterly Journal of the Royal Meteorological Society, 142: 632-643, DOI:10.1002/qj.2526, 2015.
  • F. Laliberté, S.E.L. Howell, J.F. Lemieux, F. Dupont and J. Lei. What historical landfast ice observations tell us about projected ice conditions in Arctic archipelagoes and marginal seas under anthropogenic forcing. The Cryosphere, 12 (11):3577-3588, https://doi.org/10.5194/tc-12-3577-2018, 2018.
  • K. Chikhar, J.F. Lemieux, F. Dupont, F. Roy, G.C. Smith, M. Brady, S.E.L. Howell and R. Béaini. Sensitivity of Ice Drift to Form Drag and Ice Strength Parameterization in a Coupled Ice–Ocean Model. Atmosphere-Ocean, 57(5), doi:10.1080/07055900.2019.1694859, 2019.
  • Roy, F., M. Chevallier, G.C. Smith, F. Dupont, G. Garric, J.F. Lemieux, Y. Lu and F. Davidson (2015), Arctic sea ice and freshwater sensitivity to the treatment of the atmosphere-ice-ocean surface layer. J. Geophys. Res. 120.
  • Dupont, F., S. Higginson, R. Bourdallé-Badie, Y. Lu, F. Roy, G.C. Smith, J.F. Lemieux, G. Garric and F. Davidson (2015), A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic Oceans. Geosci. Model Dev.
  • Smith, G.C., F. Roy, M. Reszka, D. Surcel Colan, Z. He, D. Deacu, J.M. Bélanger, S. Skachko, Y. Lu, F. Dupont, J.F. Lemieux, C. Beaudoin, B. Tranchant, M. Drévillon, G. Garric, C.E. Testut, J.M. Lellouche, P. Pellerin, H. Ritchie, Y. Lu, F. Davidson, M. Buehner and M. Lajoie, Sea ice forecast verification in the canadian Global Ice Ocean Prediction System. Q. J. R. Meteorol. Soc, in press.
  • Lemieux, J.F., C. Beaudoin, F. Dupont, F. Roy, G.C. Smith, A. Shlyaeva, M. Buehner, A. Caya, J. Chen, T. Carrieres, L. Pogson, P. DeRepentigny, A. Plante, P. Pestieau, P. Pellerin, H. Ritchie, G. Garric and N. Ferry, The Regional Ice Prediction System (RIPS): verification of forecast sea ice concentration. Q. J. R. Meteorol. Soc., in press.

Institut Maurice-Lamontagne

Institute of Ocean Sciences, B. C.

Ice Engineering Group, Smart Solutions for Challenging Environments

Universite´ Laval

Memorial University of Newfoundland

University of Victoria

  • C. M. Bitz, M. M. Holland, A. J. Weaver, and M. Eby. Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res.–Oceans, 106:2441–2463, 2001.
  • M. M. Holland, A. J. Brasket, A. J. Weaver. The impact of rising atmospheric CO2 on simulated sea ice induced thermohaline circulation variability. Geophys. Res. Lett., 27: 1519-1522, 2000. (evp)
  • M. M. Holland, C. M. Bitz and A. J. Weaver. The influence of sea ice physics on simulations of climate change. J. Geophys. Res. 106: 19,639-19,655, 2001. (evp)
  • O. A. Saenko and A. J. Weaver. Importance of wind-driven sea ice motion for the formation of Antarctic Intermediate Water in a global climate model. Geophys. Res. Lett. 28: 4147-4150, 2001. (evp)
  • O. A. Saenko, A. Schmittner and A. J. Weaver. On the Role of Wind-Driven Sea Ice Motion on Ocean Ventilation. J. Phys. Oceanogr. 32: 3376-3395, 2002. (evp)
  • A. Schmittner, K. J. Meissner, M. Eby, and A. J. Weaver. Forcing of the deep ocean circulation in simulations of the Last Glacial Maximum. Paleoceanogr. 17: 1015, 10.1029/2001PA000633, 2002. (evp)
  • J. P. Lewis, A. J. Weaver, S. T. Johnston, and M. Eby. Neoproterozoic ‘‘snowball Earth’’: Dynamic sea ice over a quiescent ocean. Paleoceanogr. 18: 1092, doi:10.1029/2003PA000926, 2003. (evp)
  • O. A. Saenko, E. C. Wiebe, and A. J. Weaver, North Atlantic response to the above-normal export of sea ice from the Arctic, J. Geophys. Res., 108(C7), 3224, doi:10.1029/2001JC001166, 2003. (evp)
  • M. Cottet-Puinel, A. J. Weaver, C. Hillaire-Marcel, A. de Vernal, P. U. Clark and M. Eby. Variation of Labrador Sea Water formation over the Last Glacial cycle in a climate model of intermediate complexity. Quat. Sci. Rev. 23: 449–465, 2004. (evp)
  • T. L. Ewen, A. J. Weaver and A. Schmittner. Modelling carbon cycle feedbacks during abrupt climate change. Quat. Sci. Rev. 23: 431–448, 2004. (evp)

China

Chinese Academy of Sciences

  • J. Liu, Z. Zhang, J. Inoue and R. M. Horton. Evaluation of snow/ice albedo parameterizations and their impacts on sea ice simulations. Int. J. Climatol. 27: 81–91, 2007.
  • X. Wang, J. Liu, Y. Yu, H. Liu. Experiment of Coupling Sea Ice Model CICE4.0 to LASG/IAP Climate System Model. Chinese J. Atmos. Sci. 34, no.4, p.780-92, 2010.

Ministry of Natural Resources

*Bao, Y., Song, Z., & Qiao, F. (2020). FIO‐ESM version 2.0: Model description and evaluation. Journal of Geophysical Research: Oceans, 125, e2019JC016036. https://doi.org/10.1029/2019JC016036

Nanjing University

  • Huazhao WANG, Lujun ZHANG, Min CHU & Siyu HU (2020) Advantages of the latest Los Alamos Sea-Ice Model (CICE): evaluation of the simulated spatiotemporal variation of Arctic sea ice, Atmospheric and Oceanic Science Letters, 13:2, 113-120, DOI: 10.1080/16742834.2020.1712186.
  • Long, M., Zhang, L., Hu, S., & Qian, S. (2021). Multi-Aspect Assessment of CMIP6 Models for Arctic Sea Ice Simulation, Journal of Climate, 34(4), 1515-1529. https://journals.ametsoc.org/view/journals/clim/34/4/JCLI-D-20-0522.1.xml.

National Climate Center

  • Chu, Min; Shi, Xueli; Fang, Yongjie; Zhang, Lujun; Wu, Tongwen; Zhou, Bing; 2019. Impacts of SIS and CICE as Sea Ice Components in BCC_CSM on the Simulation of the Arctic Climate. Journal of Ocean University of China, 18, 553–562. 10.1007/s11802-019-3862-1. http://link.springer.com/10.1007/s11802-019-3862-1

Ocean University of China

  • Yang Qinghua, Liu Jiping, Zhang Zhanhai, Sui Cuijuan, Xing Jianyong, Li Ming, Li Chunhua, Zhao Jiechen, Zhang Lin.
  1. Sensitivity of the Arctic sea ice concentration forecasts to nica, 33(12): 15–23, doi: 10.1007/s13131-014-0566-7

Polar Research Institute of China

  • Z. Zhang and J. Liu. Variation of Sea Ice Temperature from CHINARE 2003 and Its Application on Sea Ice Model Evaluation. Atmos. Ocean. Sci. Lett. 2, No. 1, 57−61, 2009.

Sun Yat‐sen University

  • Yang, C.‐Y., Liu, J., & Xu, S. (2020). Seasonal Arctic sea ice prediction using a newly developed fully coupled regional model with the assimilation of satellite sea ice observations. Journal of Advances in Modeling Earth Systems, 12, e2019MS001938. https://doi.org/10.1029/2019MS001938

Tsinghua University


Denmark

Danish Meteorological Institute

  • Madsen, K.S., Mottram, R., Rasmussen, T.A.S. & Ribergaard, M.H. (2015): Examining ocean-atmosphere-sea ice processes in the Arctic and around Greenland using a coupled model system. REKLIM special issue, Polarforschung (accepted).
  • Madsen, K. S., Rasmussen, T.A.S., Ribergaard, M.H. & Ringgaard, I. (2015): High resolution Modelling and validation of sea ice of the Arctic with focus on south Greenland waters, 2004-2014. REKLIM special issue, Polarforschung (submitted).

University of Copenhagen

  • T. A. S. Rasmussen, N. Kliem, E. Kaas. Modelling the sea ice in the Nares Strait. Ocean Mod. 35, iss.3, p.161-172, 2010.
  • T. A. S. Rasmussen, N. Kliem, E. Kaas. The Effect of Climate Change on the Sea Ice and Hydrography in Nares Strait. Atmos.-Ocean 49, p.245-258, DOI: 10.1080/07055900.2011.604404, 2011.

France

Meteo-France

(EVP and incremental remap) \ [http://www.cnrm.meteo.fr/gmgec/spip.php?article86 CNRM Model web page]

  • Salas-Mélia, D. A global coupled sea ice-ocean model. Ocean Mod. 4, 137-172, 2002.
  • D. Salas y Mélia, F. Chauvin, M. Déqué, H. Douville, J.-F. Gueremy, P. Marquet, S. Planton, J.-F. Royer and S. Tyteca. Description and validation of the CNRM-CM3 global coupled model, note de centre No 103 du CNRM, 2005. Available from http://www.cnrm.meteo.fr/scenario2004/paper_cm3.pdf
  • V. Guemas and D. Salas y Mélia. Simulation of the Atlantic meridional overturning circulation in an atmosphere-ocean global coupled model, Part I: A mechanism governing the variability of ocean convection in a preindustrial experiment. Climate Dyn. 31(1), 29-48. doi:10.1007/s00382-007-0336-8, 2008.
  • D. Swingedouw, L. Terray, C. Cassou, A. Voldoire, D. Salas y Mélia, J. Servonnat. Natural forcing of climate during the last millennium. Part 1: Fingerprint of solar variability, Climate Dyn, doi: 10.1007/s00382-010-0803-5, 2010.
  • J. Körper, I. Höschel, J. A. Lowe, C. D. Hewitt, D. Salas-Melia, E. Roeckner, H. Huebener, J.-F. Royer, J.-L. Dufresne, A. Pardaens, M. A. Giorgetta, M. G. Sanderson, O. H. Otterå, J. Tjiputra, S. Denvil. The effect of aggressive mitigation on sea level rise and sea ice changes. Submitted to Climate Dyn., 2011.
  • Chevallier, M. and D. Salas y Mélia. The role of sea-ice thickness distribution in the Arctic sea-ice potential predictability: A diagnostic approach with a coupled GCM, submitted to J. Climate, 2011.
  • A. Voldoire, E. Sanchez-Gomez, D. Salas y Mélia, B. Decharme, C. Cassou, S.Sénési, S. Valcke, I. Beau, A. Alias, M. Chevallier, M. Déqué, J. Deshayes, H. Douville, E. Fernandez, G. Madec, E. Maisonnave , M.-P. Moine, S. Planton, D. Saint-Martin, S. Szopa, S. Tyteca, R. Alkama, S. Belamari, A. Braun, L. Coquart, F. Chauvin. The CNRM-CM5.1 global climate model: description and basic evaluation , Clim. Dyn., DOI:10.1007/s00382-011-1259-y, 2012.

Sorbonne Universités, UPMC Univ.

  • Pellichero, V., Sallée, J.-B., Schmidtko, S., Roquet, F., and Charrassin, J.-B. (2017), The ocean mixed layer under Southern Ocean sea‐ice: Seasonal cycle and forcing, J. Geophys. Res. Oceans, 122, 1608– 1633, doi:10.1002/2016JC011970.

Universite´ Joseph Fourier

  • L. Girard, J. Weiss, J. M. Molines, B. Barnier, and S. Bouillon. Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation, J. Geophys. Res., 114, C08015, doi:10.1029/2008JC005182, 2009.

Germany

Alfred Wegener Institute (various locations)

  • M. Kimmritz, S. Danilov, and M. Losch. On the convergence of the modified elastic-viscous-plastic method for solving the sea ice momentum equation. J. Comp. Phys., 296:90–100, http://dx.doi.org/10.1016/j.jcp.2015.04.051, 2015.
  • A. Rinke, R. Gerdes, K. Dethloff, T. Kandlbinder, M. Karcher, F. Kauker, S. Frickenhaus, C. Koberle, and W. Hiller. A case study of the anomalous Arctic sea ice conditions during 1990: Insights from coupled and uncoupled regional climate model simulations. J. Geophys. Res. 108: 4275, doi:10.1029/2002JD003146, 2003. (evp)
  • Giulia Castellani, Martin Losch, Mischa Ungermann, Rüdiger Gerdes, Sea-ice drag as a function of deformation and ice cover: Effects on simulated sea ice and ocean circulation in the Arctic, Ocean Modelling, Volume 128, 2018, Pages 48-66, ISSN 1463-5003, https://doi.org/10.1016/j.ocemod.2018.06.002.
  • M. Losch, D. Menemenlis, J.-M. Campin, P. Heimbach, and C. Hill. On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Mod., 2010. in press.
  • Shi, Xiaoxu; Notz, Dirk; Liu, Jiping; Yang, Hu; Lohmann, Gerrit; 2020. Sensitivity of Northern Hemisphere climate to ice-ocean interface heat flux parameterizations. https://gmd.copernicus.org/preprints/gmd-2020-287/

GEOMAR Helmholtz Centre for Ocean Research

  • Martin, T., Tsamados, M., Schroeder, D. and Feltham, D. The impact of variable sea ice roughness on changes in Arctic Ocean surface stress: a model study. Journal of Geophysical Research: Oceans, 121 (3). pp. 1931-1952. ISSN 2169-9291 doi: https://doi.org/10.1002/2015JC011186, 2016.

Helmholtz-Zentrum Geesthacht

  • Ho-Hagemann, H.T.M., Rockel, B., Kapitza, H., Geyer, B., and Meyer, E. (2013) COSTRICE – an atmosphere – ocean – sea ice model coupled system using OASIS3. Technical Report No. 2013-5//ISSN 2191-7833. Helmholtz-Zentrum Geesthacht, Germany.

  • Ho-Hagemann, H.T.M., Hagemann, S., Rockel, B. (2015) On the role of soil moisture in the generation of heavy rainfall during the Oder flood event in July 1997. Tellus A.


India

Allahabad University/CSIR

Indian Institute of Technology

National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences


Italy

Euro-Mediterranean Centre for Climate Change (CMCC)


New Zealand

National Institute of Water and Atmospheric Research

  • L.A. Roach, C. M. Bitz, C. Horvat, and S. M. Dean. Advances in modelling interactions between sea ice and ocean surface waves. J. Adv. Modeling Earth Sys., 11(12):4167–4181, http://doi.wiley.com/10.1029/2019MS001836, 2019.
  • L. A. Roach, C. Horvat, S. M. Dean, and C. M. Bitz. An emergent sea ice floe size distribution in a global coupled ocean-sea ice model. J. Geophys. Res. Oceans, 123(6):4322–4337, http://dx.doi.org/10.1029/2017JC013692, 2018.
  • L. A. Roach, M. M. Smith, and S. M. Dean. Quantifying growth of pancake sea ice floes using images from drifting buoys. J. Geophys. Res. Oceans, 123(4):2851–2866, http://doi.wiley.com/10.1002/2017JC013693, 2018.

University of Otago

  • Mackie, S., Langhorne, P. J., Heorton, H. D. B. S., Smith, I. J., Feltham, D. L. and Schroeder, D. Sea ice formation in a coupled climate model including grease ice. Journal of Advances in Modeling Earth Systems, 12 (8). e2020MS002103. ISSN 1942-2466 doi: https://doi.org/10.1029/2020MS002103, 2020.

Norway

The Arctic University of Norway

  • Fritzner, S., Graversen, R., Christensen, K. H., Rostosky, P., and Wang, K.: Impact of assimilating sea ice concentration, sea ice thickness and snow depth in a coupled ocean–sea ice modelling system, The Cryosphere, 13, 491–509, https://doi.org/10.5194/tc-13-491-2019, 2019.

NERSC

Institute of Marine Research

  • W. P. Budgell. Numerical simulation of ice-ocean variability in the Barents Sea region: Towards dynamical downscaling. Ocean Dyn. 55, 370-387, doi 10.1007/s10236-005-0008-3, 2005.

University of Bergen

  • L. H. Smedsrud, W. P. Budgell, A. D. Jenkins, B. Adlandsvik. Fine-scale sea-ice modelling of the Storfiorden polynya, Svalbard. Ann. Glaciol. 44, p.73-79, 2006. (ROMS - EVP)
  • H. R. Langehaug, F. Geyer, L. H. Smedsrud, and Y. Gao. Arctic sea ice decline and ice export in the CMIP5 historical simulations, Ocean Modelling,Volume 71, 114–126, doi: 10.1016/j.ocemod.2012.12.006, 2013

''Institutions participating in EarthClim's NorESM:''

Uni Research AS

Bjerknes Centre for Climate Research

Norwegian Meteorological Institute

CICERO Center for Intern Climate and Environmental Research

Meteorol and Oceanogr Section, Dep of Geosciences, Univ of Oslo

Norwegian Computing Center

Norwegian Institute for Air Research

Norwegian Polar Institute

  • Z. S. Zhang, K. Nisancioglu, M. Bentsen, J. Tjiputra, I. Bethke, Q. Yan, B. Risebrobakken, C. Andersson, and E. Jansen. Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci. Model Dev. Discuss., 5, 119-148, 2012
  • Z. Zhang and Q. Yan. Pre-industrial and mid-Pliocene simulations with NorESM-L – AGCM simulations. Geosci. Model Dev. Discuss., 5, 1203-1227, 2012.
  • A. Kirkevåg, T. Iversen, Ø. Seland, C. Hoose, J. E. Kristjánsson, H. Struthers, A. M. L. Ekman, S. Ghan, J. Griesfeller, E. D. Nilsson, and M. Schulz. Aerosol-climate interactions in the Norwegian Earth System Model – NorESM. Geosci. Model Dev. Discuss., 5, 2599-2685, 2012
  • M. Bentsen, I. Bethke, J. B. Debernard, T. Iversen, A. Kirkevåg, Ø. Seland, H. Drange, C. Roelandt, I. A. Seierstad, C. Hoose, and J. E. Kristjánsson. The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation. Geosci. Model Dev. Discuss., 5, 2843-2931, 2012.
  • T. Iversen, M. Bentsen, I. Bethke, J. B. Debernard, A. Kirkevåg, Ø. Seland, H. Drange, J. E. Kristjánsson, I. Medhaug, M. Sand, and I. A. Seierstad. The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections. Geosci. Model Dev. Discuss., 5, 2933-2998, 2012.
  • J. F. Tjiputra, C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze. Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev. Discuss., 5, 3035-3087, 2012.
  • E. M. Knudsen and J. E. Walsh. Northern Hemisphere storminess in the Norwegian Earth System Model (NorESM1-M). Geosci. Model Dev. Discuss., 7, 8975-9015, 2014. Manuscript under review for GMD.
  • Duarte, P., Meyer, A., Olsen, L.M., Kauko, H., Assmy, P., R ̈osel, A., Itkin, P., Hudson, S.R., Granskog, M.A., Gerland, S., Sundfjord, A., Steen, H., Haakon H., Jeffery, N., Elliott, S. M., Hunke, E. C., Turner, A. K. Sea ice thermohaline-dynamics and biogeochemistry in the Arctic Ocean: empirical and model results, J. Geophys. Res. Biogeosciences, DOI 10.1002/2016JG003660, 2017.
  • Duarte, Pedro; Sundfjord, Arild; Meyer, Amelie; Hudson, Stephen R.; Spreen, Gunnar; Smedsrud, Lars H.; 2020. Warm Atlantic Water Explains Observed Sea Ice Melt Rates North of Svalbard. Journal of Geophysical Research: Oceans, 125, 10.1029/2019JC015662 https://onlinelibrary.wiley.com/doi/10.1029/2019JC015662

Russia

Far-Eastern Regional Hydrometeorological Research Institute, Russian Federation

  • Vrazhkin, A.N.; 2020. MID-TERM FORECAST FOR THE ICE CONDITIONS IN THE BERING SEA. Izvestiya TINRO, 200, 131–140. 10.26428/1606-9919-2020-200-131-140.

Lomonosov Moscow State University

  • Diansky, N. A.; Stepanov, D. V.; Fomin, V. V.; Chumakov, M. M.; 2020. Water Circulation Off the Northeastern Coast of Sakhalin during the Passage of Three Types of Deep Cyclones over the Sea of Okhotsk. Russian Meteorology and Hydrology, 45, 29–38. 10.3103/S1068373920010045. https://doi.org/10.3103/S1068373920010045

Russian Academy of Sciences

  • Voevodin, Vladimir; Sobolev, Sergey; Fadeev, Rostislav; Ushakov, Konstantin; Tolstykh, Mikhail; Ibrayev, Rashit; Shashkin, Vladimir; Goyman, Gordey; 2019. Supercomputing the Seasonal Weather Prediction. In: (eds.)Supercomputing.. 415–426. http://link.springer.com/10.1007/978-3-030-36592-9_34

Institute of Computational Mathematics and Mathematical Geophysics

  • E. N. Golubeva and G. A. Platov. A study of Arctic ice-ocean system variability. Geography and Natural Resources. No.3, 283-287, 2004 (in Russian).
  • V. I. Kuzin, E. N. Golubeva, G. A. Platov. Numerical simulation of impurity and fresh water propagation in the Arctic-North Atlantic system. Russian J. Num. Anal. Math. Mod. 21, iss.4, p.321-343, 2006.
  • E. N. Golubeva and G. A. Platov. On improving the simulation of Atlantic water circulation in the Arctic Ocean. J. Geophys. Res., 112, C04S05, doi:10.1029/2006JC003734, 2007.
  • V. N. Krupchatnikov, V. I. Kuzin, E. N. Golubeva, Y. V. Martynova, G. A. Platov, et al. Hydrology and vegetation dynamics of the climate system of northern Eurasia and the Arctic basin. Izvestiya Atmos. Ocean. Phys. 45, iss.1, p.116-136, 2009.
  • E. N. Golubeva, G. A. Platov. Numerical modeling of the Arctic Ocean ice system response to variations in the atmospheric circulation from 1948 to 2007. Izvestiya Atmos. Ocean. Phys. 45, iss.1, p.137-151, 2009.
  • V. I. Kuzin, G. A. Platov, E. N. Golubeva. Influence that interannual variations in Siberian river discharge have on redistribution of freshwater fluxes in Arctic Ocean and North Atlantic. Izvestiya Atmos. Ocean. Phys. 46, iss.6, p. 770-783, 2010.
  • G. A. Platov. Numerical Modeling of the Arctic Ocean Deepwater Formation: Part I. Idealized Study. Izvestiya Atmos. Ocean. Phys., 47, No. 3, 362–376, 2011.
  • G. A. Platov. Numerical Modeling of the Arctic Ocean Deepwater Formation: Part II. Results of Regional and Global Experiments. Izvestiya Atmos. Ocean. Phys., 47, No. 3, 377–392, 2011.

Sweden

Swedish Meteorological and Hydrological Institute

  • H. E. M. Meier and T. Faxen. Performance Analysis of a Multiprocessor Coupled Ice–Ocean Model for the Baltic Sea. J. Atmos. Ocean. Tech. 19: 114- 124, 2002.

United Kingdom

British Antarctic Survey

  • W. M. Connolley, J. M. Gregory, E. C. Hunke, and A. J. McLaren. On the consistent scaling of terms in the sea ice dynamics equation. J. Phys. Oceanogr., 34:1776–1780, 2004.
  • W. M. Connolley, A. B. Keen and A. J. McLaren. Results from the implementation of the Elastic Viscous Plastic sea ice rheology in HadCM3. Ocean Sci., 2: 201–211, 2006. (evp)
  • P. R. Holland, A. Jenkins, and D. M. Holland. Ice and ocean processes in the Bellingshausen Sea, Antarctica. Journal of Geophysical Research, 115: C05020. doi:10.1029/2008JC005219, 2010.
  • J. C. King, M. J. Doble, and P. R. Holland. Analysis of a rapid sea ice retreat event in the Bellingshausen Sea. Journal of Geophysical Research, 115: C12030. doi:10.1029/2010JC006101, 2010.
  • Kjellsson, J., Holland, P.R., Marshall, G.J., Mathiot, P., Aksenov, Y., Coward, A.C., Bacon, S., Megann, A. P., Ridley, J. (2015) Model sensitivity of the Weddell and Ross seas, Antarctica, to vertical mixing and freshwater forcing, Ocean Modelling 94, 141-152, doi: 10.1016/j.ocemod.2015.08.003 http://www.sciencedirect.com/science/article/pii/S1463500315001560

UK Met Office

  • A. J. McLaren, H. T. Banks, C. F. Durman, J. M. Gregory, T. C. Johns, A. B. Keen, J. K. Ridley, M. J. Roberts, W. H. Lipscomb, W. M. Connolley, and S. W. Laxon. Evaluation of the sea ice simulation in a new coupled atmosphere-ocean climate model (HadGEM1). J. Geophys. Res. 111, C12014, doi:10.1029/2005JC003033, 2006.
  • H. T. Hewitt, D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke. Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geoscientic Model Development, doi:10.5194/gmd–4–223–2011, 2011.
  • The HadGEM2 Development Team: Martin, G. M. et al. The HadGEM2 family of Met Office Unified Model Climate configurations. Submitted to Geoscientific Model Development, 2011. (EVP, ITD).
  • Arribas , A., Glover, M., Maidens, A., Peterson, K., Gordon, M., !MacLachlan, C., Graham, R., Fereday, D., Camp, J., Scaife, A.A., Xavier, P., McLean, P., Colman, A., and Cusack, S. The GloSea4 ensemble prediction system for seasonal forecasting, Mon. Wea. Rev., 139(6), 1891-1910, doi:10.1175/2011MWR3615.1, 2011.
  • Rae J.G.L., Hewitt H.T., Keen A.B., Ridley J.K., Edwards J.M., and Harris, C.M. (2014), A sensitivity study of the sea ice simulation in the global coupled climate model, HadGEM3, Ocean Modelling, 74, 60-76, doi:10.1016/j.ocemod.2013.12.003.
  • Rae J.G.L, Hewitt H.T., Keen A.B., Ridley J.K., West A.E., Harris C.M., Hunke, E.C., and Walters D.N. (2015), Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled Mode, Geosci. Model Dev., 8, 2221-2230, doi: 10.5194/gmd-8-2221-2015
  • Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D.: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts, Geosci. Model Dev., 7, 2613-2638, doi:10.5194/gmd-7-2613-2014, 2014.

Proudman Oceanographic Laboratory / National Oceanography Centre

  • C. F. Postlethwaite, M. A. Morales Maqueda, V. le Fouest, G. R. Tattersall, J. Holt, and A. J. Willmott. The effect of tides on dense water formation in Arctic shelf seas. Ocean Sci., 7, 203-217, 2011.

Southampton Oceanography Centre

University of Liverpool

University College London

  • P. Miller, S. W. Laxon, and D. L. Feltham. Improved spatial distribution of arctic sea ice thickness with an optimised model. Geophysical Research Letters, 32:L18503, doi:10.1029/2005GL023622, 2005.
  • A. V. Wilchinsky, D. L. Feltham and P. A. Miller. A Multithickness Sea Ice Model Accounting for Sliding Friction. J. Phys. Oceanogr. 36, 1719-1738, 2006.
  • P. A. Miller, S. W. Laxon, D. L. Feltham, and D. J. Cresswell. Optimization of a sea ice model using basin-wide observations of Arctic sea ice thickness, extent and velocity. J. Clim., 19:1089–1108, 2006.
  • P. A. Miller, S. W. Laxon, and D. L. Feltham. Consistent and contrasting decadal Arctic sea ice thickness predictions from a highly optimized sea ice model. J. Geophys. Res., 112:C07020, doi:10.1029/2006JC003855, 2007.
  • D. Flocco, D. L. Feltham, and A. K. Turner. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res., 115:C08012, doi:10.1029/2009JC005568, 2010.
  • Tsamados, Michel, et al. "Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model." Phil. Trans. R. Soc. A 373.2052 (2015): 20140167.

University of Reading

  • Wilchinsky, A. V., Heorton, H. D. B. S., Feltham, D. and Holland, P. R. Study of the impact of ice formation in leads upon the sea ice pack mass balance using a new frazil and grease ice parameterization. Journal of Physical Oceanography, 45 (8). pp. 2025-2047. ISSN 0022-3670 doi: https://doi.org/10.1175/JPO-D-14-0184.1, 2015.
  • Schröder, D., Feltham, D. L., Tsamados, M., Ridout, A. and Tilling, R. New insight from CryoSat-2 sea ice thickness for sea ice modelling. The Cryosphere, 13. pp. 125-139. ISSN 1994-0424 doi: https://doi.org/10.5194/tc-13-125-2019, 2019.
  • Heorton, H. D. B. S., Feltham, D. L. and Tsamados, M. Stress and deformation characteristics of sea ice in a high-resolution, anisotropic sea ice model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (2129). 20170349. ISSN 1364-503X doi: https://doi.org/10.1098/rsta.2017.0349, 2018.
  • Bateson, A. W., Feltham, D. L., Schroeder, D., Hosekova, L., Ridley, J. K. and Aksenov, Y. Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice. The Cryosphere, 14 (2). pp. 403-428. ISSN 1994-0424 doi: https://doi.org/10.5194/tc-14-403-2020, 2020.
  • D. Flocco, D. Schroeder, D. L. Feltham, and E. C. Hunke. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J. Geophys. Res., 117, C09032, doi:10.1029/2012JC008195, 2012.
  • M. Tsamados, D. L. Feltham A. V. and Wilchinsky, Impact of a new anisotropic rheology on simulations of Arctic sea ice, J. Geophys. Res. Oceans, 118: 91-107, http://dx.doi.org/10.1029/2012JC007990, 2012.
  • M. Tsamados, D. L. Feltham, D. Schroeder, D. Flocco, S. L. Farrell, N. T. Kurtz, S. W. Laxon and S. Bacon, Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice, J. Geophys. Res. Oceans, in review.


analysis of model output

''(generally provided by E. Hunke)''

  • (UAF) M. Johnson, S. Gaffigan, E. Hunke, and R. Gerdes. A comparison of Arctic Ocean sea ice concentration among the coordinated AOMIP model experiments. J. Geophys. Res., 112:C04S11, doi:101029/2006JC003690, 2007.
  • (WHOI) A. Proshutinsky, I. Ashik, S. Hakkinen, E. Hunke, R. Krisheld, M. Maltrud, W. Maslowski, and J. Zhang. Sea level variability in the Arctic Ocean from AOMIP models. J. Geophys. Res., 112:C04S08, doi:10.1029/2006JC003916, 2007.
  • (AWI) M. Karcher, F. Kauker, R. Gerdes, E. Hunke, and J. Zhang. On the dynamics of Atlantic Water circulation in the Arctic Ocean—results from AOMIP. J. Geophys. Res., 112:C04S02, doi:10.1029/2006JC003630, 2007.
  • (IOS) G. Holloway, F. Dupont, E. Golubeva, S. Hakkinen, E. Hunke, M. Jin, M. Karcher, F. Kauker, M. Maltrud, M. A. Morales Maqueda, W. Maslowski, G. Platov, D. Stark, M. Steele, T. Suzuki, J. Wang, and J. Zhang. Water properties and circulation in Arctic Ocean models. J. Geophys. Res., pages 112, C04S03, doi:10.1029/2006JC003642, 2007.
  • (JPL) R. Kwok, E. C. Hunke, W. Maslowski, D. Menemenlis, and J. Zhang. Variability of sea ice simulations assessed with RGPS kinematics. J. Geophys. Res., 113:C11012, doi:10.1029/2008JC004783, 2008.
  • (NOC) E. E. Popova, A. Yool, F. Dupont, C. Deal, S. Elliott, E. Hunke, M. Jin, M. Steele, and J. Zhang. What controls primary production in the Arctic Ocean? Results from an ecosystem model inter- comparison. J. Geophys. Res., submitted, 2011.
Clone this wiki locally