Releases: Alexandre-Delplanque/HerdNet
Releases · Alexandre-Delplanque/HerdNet
v0.2.1
Code license changed to MIT License
.
New features
Classes and functions
Rotate90
: New transform to rotate image by 90 degrees.Trainer
: Option for validating on loss value.
Tools
infer.py
: New optional cmd argument to rotate image before inference.
Minor Fixes
- Change UAV dataset hosting (now in ULiège Open Data Repository)
- It is now possible to resume a training session when a validation frequency > 1 is used.
- Solving the problem of continuously increasing training time over epochs.
Commits
Alexandre-Delplanque (19):
- 0fb5a68 - Merge branch 'feature' into main
- 506e1e1 - chore: update CHANGELOG.md
- c101dca - fix: update code version
- 031cc1a - chore: minor change
- 4a2c68a - fix: update code version
- b424c5b - Merge pull request #3 from Alexandre-Delplanque/new-license
- ce16958 - chore: update CHANGELOG.md
- d2b9078 - chore: final licence changes
- f063a82 - chore: switch to MIT License
- d6b3ffb - fix: change how images are rotated
- c67404b - feat: add Rotate90 transform
- 39e317a - fix: increasing training time over epochs
- 4baeab1 - fix: resume training when using valid_freq
- d86ec37 - fix: new link for UAV dataset #2
- 53dd60a - fix: weights to device when not None (_ssim_loss)
- b082fc4 - feat: rotation option for infer.py tool
- c0bfc31 - fix: only CSV's images when -all arg is False
- addbc9b - Merge branch 'feature' of https://github.com/Alexandre-Delplanque/Herd-Net into feature
- d480319 - feat: option for evaluation with loss in Trainer
v0.2.0
New features
Classes and functions
CustomLogger
: Argument to disable logging to CSV files (use to much memory).Trainer
: Arguments to set the validation frequency during training (valid_freq
) and to choose whether to save logs to CSV files (csv_logger
).HerdNet
: New method for reshaping classes (reshape_classes()
), useful for loading pre-trained parameters.FolderDataset
: New flag (from_folder
) inself.data
attribute.
Python modules
sampler.py
: New python module for hosting samplers for data loading.
Tools
train.py
: New keys:wandb_run
,model.freeze
(HerdNet only),datasets.class_def
,datasets.sampler
andtraining_settings.valid_freq
. Now use the class definition (i.e.,datasets.class_def
) to make sure the labels match the species names.test.py
: New keys:wandb_run
anddataset.class_def
. Now use the class definition (i.e.,dataset.class_def
) 1) to make sure the labels match the species names, and 2) for plotting precision-recall curves, saving the detections, the metrics and the confusion matrix.
v0.1.0
Add LICENSE