forked from ShusenTang/Dive-into-DL-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c0bc547
commit ad26727
Showing
2 changed files
with
408 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# 4.5 读取和存储" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"0.4.1\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import torch\n", | ||
"from torch import nn\n", | ||
"\n", | ||
"print(torch.__version__)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 4.5.1 读写`Tensor`" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"x = torch.ones(3)\n", | ||
"torch.save(x, 'x.pt')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"tensor([1., 1., 1.])" | ||
] | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"x2 = torch.load('x.pt')\n", | ||
"x2" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[tensor([1., 1., 1.]), tensor([0., 0., 0., 0.])]" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"y = torch.zeros(4)\n", | ||
"torch.save([x, y], 'xy.pt')\n", | ||
"xy_list = torch.load('xy.pt')\n", | ||
"xy_list" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"{'x': tensor([1., 1., 1.]), 'y': tensor([0., 0., 0., 0.])}" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"torch.save({'x': x, 'y': y}, 'xy_dict.pt')\n", | ||
"xy = torch.load('xy_dict.pt')\n", | ||
"xy" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 4.5.2 读写模型\n", | ||
"### 4.5.2.1 `state_dict`" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"OrderedDict([('hidden.weight', tensor([[ 0.1836, -0.1812, -0.1681],\n", | ||
" [ 0.0406, 0.3061, 0.4599]])),\n", | ||
" ('hidden.bias', tensor([-0.3384, 0.1910])),\n", | ||
" ('output.weight', tensor([[0.0380, 0.4919]])),\n", | ||
" ('output.bias', tensor([0.1451]))])" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"class MLP(nn.Module):\n", | ||
" def __init__(self):\n", | ||
" super(MLP, self).__init__()\n", | ||
" self.hidden = nn.Linear(3, 2)\n", | ||
" self.act = nn.ReLU()\n", | ||
" self.output = nn.Linear(2, 1)\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" a = self.act(self.hidden(x))\n", | ||
" return self.output(a)\n", | ||
"\n", | ||
"net = MLP()\n", | ||
"net.state_dict()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"{'param_groups': [{'dampening': 0,\n", | ||
" 'lr': 0.001,\n", | ||
" 'momentum': 0.9,\n", | ||
" 'nesterov': False,\n", | ||
" 'params': [4624483024, 4624484608, 4624484680, 4624484752],\n", | ||
" 'weight_decay': 0}],\n", | ||
" 'state': {}}" | ||
] | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)\n", | ||
"optimizer.state_dict()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 4.5.2.2 保存和加载模型" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"tensor([[1],\n", | ||
" [1]], dtype=torch.uint8)" | ||
] | ||
}, | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"X = torch.randn(2, 3)\n", | ||
"Y = net(X)\n", | ||
"\n", | ||
"PATH = \"./net.pt\"\n", | ||
"torch.save(net.state_dict(), PATH)\n", | ||
"\n", | ||
"net2 = MLP()\n", | ||
"net2.load_state_dict(torch.load(PATH))\n", | ||
"Y2 = net2(X)\n", | ||
"Y2 == Y" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python [default]", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.