forked from ShusenTang/Dive-into-DL-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
878782d
commit c0bc547
Showing
3 changed files
with
432 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# 4.4 自定义层\n", | ||
"## 4.4.1 不含模型参数的自定义层" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"0.4.1\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import torch\n", | ||
"from torch import nn\n", | ||
"\n", | ||
"print(torch.__version__)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"class CenteredLayer(nn.Module):\n", | ||
" def __init__(self, **kwargs):\n", | ||
" super(CenteredLayer, self).__init__(**kwargs)\n", | ||
" def forward(self, x):\n", | ||
" return x - x.mean()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"tensor([-2., -1., 0., 1., 2.])" | ||
] | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"layer = CenteredLayer()\n", | ||
"layer(torch.tensor([1, 2, 3, 4, 5], dtype=torch.float))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0.0" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"y = net(torch.rand(4, 8))\n", | ||
"y.mean().item()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 4.4.2 含模型参数的自定义层" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"MyListDense(\n", | ||
" (params): ParameterList(\n", | ||
" (0): Parameter containing: [torch.FloatTensor of size 4x4]\n", | ||
" (1): Parameter containing: [torch.FloatTensor of size 4x4]\n", | ||
" (2): Parameter containing: [torch.FloatTensor of size 4x4]\n", | ||
" (3): Parameter containing: [torch.FloatTensor of size 4x1]\n", | ||
" )\n", | ||
")\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"class MyListDense(nn.Module):\n", | ||
" def __init__(self):\n", | ||
" super(MyListDense, self).__init__()\n", | ||
" self.params = nn.ParameterList([nn.Parameter(torch.randn(4, 4)) for i in range(3)])\n", | ||
" self.params.append(nn.Parameter(torch.randn(4, 1)))\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" for i in range(len(self.params)):\n", | ||
" x = torch.mm(x, self.params[i])\n", | ||
" return x\n", | ||
"net = MyListDense()\n", | ||
"print(net)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"MyDictDense(\n", | ||
" (params): ParameterDict(\n", | ||
" (linear1): Parameter containing: [torch.FloatTensor of size 4x4]\n", | ||
" (linear2): Parameter containing: [torch.FloatTensor of size 4x1]\n", | ||
" (linear3): Parameter containing: [torch.FloatTensor of size 4x2]\n", | ||
" )\n", | ||
")\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"class MyDictDense(nn.Module):\n", | ||
" def __init__(self):\n", | ||
" super(MyDictDense, self).__init__()\n", | ||
" self.params = nn.ParameterDict({\n", | ||
" 'linear1': nn.Parameter(torch.randn(4, 4)),\n", | ||
" 'linear2': nn.Parameter(torch.randn(4, 1))\n", | ||
" })\n", | ||
" self.params.update({'linear3': nn.Parameter(torch.randn(4, 2))}) # 新增\n", | ||
"\n", | ||
" def forward(self, x, choice='linear1'):\n", | ||
" return torch.mm(x, self.params[choice])\n", | ||
"\n", | ||
"net = MyDictDense()\n", | ||
"print(net)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"tensor([[1.5082, 1.5574, 2.1651, 1.2409]], grad_fn=<MmBackward>)\n", | ||
"tensor([[-0.8783]], grad_fn=<MmBackward>)\n", | ||
"tensor([[ 2.2193, -1.6539]], grad_fn=<MmBackward>)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"x = torch.ones(1, 4)\n", | ||
"print(net(x, 'linear1'))\n", | ||
"print(net(x, 'linear2'))\n", | ||
"print(net(x, 'linear3'))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Sequential(\n", | ||
" (0): MyDictDense(\n", | ||
" (params): ParameterDict(\n", | ||
" (linear1): Parameter containing: [torch.FloatTensor of size 4x4]\n", | ||
" (linear2): Parameter containing: [torch.FloatTensor of size 4x1]\n", | ||
" (linear3): Parameter containing: [torch.FloatTensor of size 4x2]\n", | ||
" )\n", | ||
" )\n", | ||
" (1): MyListDense(\n", | ||
" (params): ParameterList(\n", | ||
" (0): Parameter containing: [torch.FloatTensor of size 4x4]\n", | ||
" (1): Parameter containing: [torch.FloatTensor of size 4x4]\n", | ||
" (2): Parameter containing: [torch.FloatTensor of size 4x4]\n", | ||
" (3): Parameter containing: [torch.FloatTensor of size 4x1]\n", | ||
" )\n", | ||
" )\n", | ||
")\n", | ||
"tensor([[-101.2394]], grad_fn=<MmBackward>)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"net = nn.Sequential(\n", | ||
" MyDictDense(),\n", | ||
" MyListDense(),\n", | ||
")\n", | ||
"print(net)\n", | ||
"print(net(x))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python [default]", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.