Skip to content
/ DIL Public

This is an implementation for our SIGIR 2023 paper "Reformulating CTR Prediction: Learning Invariant Feature Interactions for Recommendation" based on PyTorch.

Notifications You must be signed in to change notification settings

zyang1580/DIL

Repository files navigation

DIL

This is an implementation for our SIGIR 2023 paper "Reformulating CTR Prediction: Learning Invariant Feature Interactions for Recommendation" based on PyTorch. This Repo contains the required code to run DIL and LighDIL on Douban, ML-10M datasets.

Requirement

To use this code, ensure you have the following prerequisites:

  • Python 3.x
  • PyTorch
  • numpy
  • pandas
  • sklearn
  • ray
  • deepctr_torch
  • etc..

Key parameters:

  • --lr1: learning rate for most parameters
  • --lr2: learning rate for \phi_t
  • --update_lr: learning rate for meta training
  • --l2_w: L2 regularization cofficient for model parameters
  • --l2_w_unstable: L2 regularization cofficient for phi_t in DIL
  • --var: coefficient controlling the variance auxiliary loss
  • --tau: temperature coefficient controlling the softmax weighting of the environment loss
  • --compare_weight: coefficient controlling the L_int."

Project description

This repository contains the following files:

  • configs.py: Define file paths for models. Please update these paths accordingly.
  • run_DIL.py, run_LightDIL.py: Main scripts for running DIL and LightDIL, respectively, with hyperparameter search capabilities.
  • run_quick_DIL.py, run_quick_LightDIL.py: Quick versions of the scripts for fast model reproduction by loading pre-trained parameters.

To execute the code, you can download the required datasets and model parameters from https://drive.google.com/drive/folders/1_67rx6vLShp7mFvP7Ku2SLk61ie9Ru-6?usp=drive_link

Running example

python run_quick_DIL.py --data_name 'ml-10m' --trial_name '0719' --seed 2000 python run_quick_LightDIL.py --data_name 'douban' --trial_name '0719' --seed 2000

python run_LightDIL.py --data_name 'douban' --trial_name '0719' --seed 2000 python run_DIL.py --data_name 'ml-10m' --trial_name '0719' --seed 2000

  • To search hyper-parameters, execute the code "run_DIL.py" or "run_LightDIL.py". The search space is provided by the following code.
# config for DIL
config = {
        'lr1':tune.grid_search([1e-3]),
        'lr2':tune.grid_search([1e-3]),
        'update_lr':tune.grid_search([1,1e-1,1e-2,1e-3]),
        'l2_w':tune.grid_search([1e-3,1e-4,1e-5,1e-6,1e-7]),
        'var':tune.grid_search([1,1e-1,1e-2,1e-3]),
        'compare_weight':tune.grid_search([1e-2,1e-3]),
        'tau':tune.grid_search([0,5,20,40,]),
        'l2_w_unstable':tune.grid_search([1e-3,5e-3,1e-4]),
    }

# config for LightDIL
config = {
        'lr1':tune.grid_search([1e-3]),
        'lr2':tune.grid_search([1e-3]),
        'update_lr':tune.grid_search([1,1e-1,1e-2,1e-3]), 
        'l2_w':tune.grid_search([1e-3,1e-4,1e-5,1e-6,1e-7]), 
        'var':tune.grid_search([1,1e-1,1e-2,1e-3]), 
        'compare_weight':tune.grid_search([1e-2,1e-3]),
        'tau':tune.grid_search([0,5,20,40,]),  
        'inter_weight':tune.grid_search([1,0.1,0.01]), 
        'init_unstable_weight':tune.grid_search([1,0.1,0.01]),
    }

python run_quick_LightDIL.py --data_name 'douban' --trial_name '0719' --seed 2000

Citation

ACM ref:

Yang Zhang, Tianhao Shi, Fuli Feng, Wenjie Wang, Dingxian Wang, Xiangnan He, and Yongdong Zhang. 2023. Reformulating CTR Prediction: Learning Invariant Feature Interactions for Recommendation. ACM SIGIR'23. https://doi.org/10.1145/3539618.3591755

About

This is an implementation for our SIGIR 2023 paper "Reformulating CTR Prediction: Learning Invariant Feature Interactions for Recommendation" based on PyTorch.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages