Skip to content

Commit

Permalink
add: leaky_relu non-linearity (#72)
Browse files Browse the repository at this point in the history
Co-authored-by: Alexander Camuto <[email protected]>
  • Loading branch information
dcbuild3r and alexander-camuto authored Dec 29, 2022
1 parent 92d76ac commit d0b7ae2
Show file tree
Hide file tree
Showing 12 changed files with 220 additions and 83 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -5,3 +5,4 @@ data
*.params
*~
\#*\#
.DS_Store
7 changes: 7 additions & 0 deletions Cargo.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ foundry_evm = { git = "https://github.com/foundry-rs/foundry", package = "foundr
halo2_wrong_ecc = { git = "https://github.com/zkonduit/halo2wrong", package = "ecc", branch = "master", optional=true}
plonk_verifier = { git = "https://github.com/zkonduit/plonk-verifier", branch = "main"}
colog = { version = "1.1.0", optional = true }

eq-float = "0.1.0"

[dev-dependencies]
criterion = {version = "0.3", features = ["html_reports"]}
Expand Down
8 changes: 4 additions & 4 deletions benches/relu.rs
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::eltwise::{EltwiseConfig, Nonlin1d, Nonlinearity, ReLu};
use ezkl::circuit::eltwise::{EltwiseConfig, Nonlin1d, Nonlinearity, ReLU};
use ezkl::tensor::*;
use halo2_proofs::dev::MockProver;
use halo2_proofs::{
Expand Down Expand Up @@ -37,7 +37,7 @@ impl<F: FieldExt + TensorType, NL: 'static + Nonlinearity<F> + Clone> Circuit<F>
.map(|_| VarTensor::new_advice(cs, K, LEN, vec![LEN], true, 512))
.collect::<Vec<_>>();

Self::Config::configure(cs, &advices[0], &advices[1], Some(&[BITS, 128]))
Self::Config::configure(cs, &advices[0], &advices[1], BITS, &[128], None)
}
}

Expand Down Expand Up @@ -66,13 +66,13 @@ fn runrelu(c: &mut Criterion) {
let input: Tensor<Value<F>> =
Tensor::<i32>::from((0..len).map(|_| rng.gen_range(0..10))).into();

let assigned: Nonlin1d<F, ReLu<F>> = Nonlin1d {
let assigned: Nonlin1d<F, ReLU<F>> = Nonlin1d {
input: ValTensor::from(input.clone()),
output: ValTensor::from(input),
_marker: PhantomData,
};

let circuit = NLCircuit::<F, ReLu<F>> {
let circuit = NLCircuit::<F, ReLU<F>> {
assigned,
_marker: PhantomData,
};
Expand Down
10 changes: 5 additions & 5 deletions examples/conv2d_mnist/main.rs
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
use ezkl::circuit::eltwise::{EltwiseConfig, ReLu};
use ezkl::circuit::eltwise::{EltwiseConfig, ReLU};
use ezkl::circuit::fused::*;
use ezkl::fieldutils;
use ezkl::fieldutils::i32_to_felt;
Expand Down Expand Up @@ -54,7 +54,7 @@ struct Config<
{
// this will be a conv layer
l0: FusedConfig<F>,
l1: EltwiseConfig<F, ReLu<F>>,
l1: EltwiseConfig<F, ReLU<F>>,
// this will be an affine layer
l2: FusedConfig<F>,
public_output: Column<Instance>,
Expand Down Expand Up @@ -200,8 +200,8 @@ where
let input = input.reshape(&[LEN]);
let output = output.reshape(&[LEN]);

let l1: EltwiseConfig<F, ReLu<F>> =
EltwiseConfig::configure(cs, &input, &output, Some(&[BITS, 32]));
let l1: EltwiseConfig<F, ReLU<F>> =
EltwiseConfig::configure(cs, &input, &output, BITS, &[32], None);

// tells the config layer to add an affine op to the circuit gate
let affine_node = FusedNode {
Expand Down Expand Up @@ -384,7 +384,7 @@ pub fn runconv() {
let root = BitMapBackend::new("conv2dmnist-layout.png", (2048, 7680)).into_drawing_area();
root.fill(&WHITE).unwrap();
let root = root
.titled("Conv -> ReLu -> Affine -> Relu", ("sans-serif", 60))
.titled("Conv -> ReLU -> Affine -> ReLU", ("sans-serif", 60))
.unwrap();

halo2_proofs::dev::CircuitLayout::default()
Expand Down
12 changes: 6 additions & 6 deletions examples/mlp_4d.rs
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
use ezkl::circuit::eltwise::{DivideBy, EltwiseConfig, ReLu};
use ezkl::circuit::eltwise::{DivideBy, EltwiseConfig, ReLU};
use ezkl::circuit::fused::*;
use ezkl::fieldutils::i32_to_felt;
use ezkl::tensor::*;
Expand All @@ -16,9 +16,9 @@ const K: usize = 15;
#[derive(Clone)]
struct MyConfig<F: FieldExt + TensorType> {
l0: FusedConfig<F>,
l1: EltwiseConfig<F, ReLu<F>>,
l1: EltwiseConfig<F, ReLU<F>>,
l2: FusedConfig<F>,
l3: EltwiseConfig<F, ReLu<F>>,
l3: EltwiseConfig<F, ReLU<F>>,
l4: EltwiseConfig<F, DivideBy<F>>,
public_output: Column<Instance>,
}
Expand Down Expand Up @@ -79,12 +79,12 @@ impl<F: FieldExt + TensorType, const LEN: usize, const BITS: usize> Circuit<F>
);

// sets up a new ReLU table and resuses it for l1 and l3 non linearities
let [l1, l3]: [EltwiseConfig<F, ReLu<F>>; 2] =
EltwiseConfig::configure_multiple(cs, &input, &output, Some(&[BITS, 1]));
let [l1, l3]: [EltwiseConfig<F, ReLU<F>>; 2] =
EltwiseConfig::configure_multiple(cs, &input, &output, BITS, &[1], None);

// sets up a new Divide by table
let l4: EltwiseConfig<F, DivideBy<F>> =
EltwiseConfig::configure(cs, &input, &output, Some(&[BITS, 128]));
EltwiseConfig::configure(cs, &input, &output, BITS, &[128], None);

let public_output: Column<Instance> = cs.instance_column();
cs.enable_equality(public_output);
Expand Down
2 changes: 1 addition & 1 deletion examples/onnx
Submodule onnx updated from 051260 to 520985
113 changes: 78 additions & 35 deletions src/circuit/eltwise.rs
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,10 @@ pub trait Nonlinearity<F: FieldExt> {
///
/// * `x` - input to function
/// * `scales` - additional parameters that may parametrize the function
fn nonlinearity(x: i32, scales: &[usize]) -> F;
fn nonlinearity(x: i32, scales: &[usize], param: Option<f32>) -> F;
/// a value which is always in the table
fn default_pair(scales: &[usize]) -> (F, F) {
(F::zero(), Self::nonlinearity(0, scales))
fn default_pair(scales: &[usize], param: Option<f32>) -> (F, F) {
(F::zero(), Self::nonlinearity(0, scales, param))
}
}

Expand All @@ -45,8 +45,10 @@ pub struct EltwiseTable<F: FieldExt, NL: Nonlinearity<F>> {
pub table_output: TableColumn,
/// Flags if table has been previously assigned to.
pub is_assigned: bool,
/// Number of bits used in lookup table.
/// Scaling of the table's inputs.
pub scaling_params: Vec<usize>,
/// Parameters related to the eltwise function being represented
pub eltwise_params: Option<f32>,
/// Number of bits used in lookup table.
pub bits: usize,
_marker: PhantomData<(F, NL)>,
Expand All @@ -58,12 +60,14 @@ impl<F: FieldExt, NL: Nonlinearity<F>> EltwiseTable<F, NL> {
cs: &mut ConstraintSystem<F>,
bits: usize,
scaling_params: &[usize],
eltwise_params: Option<f32>,
) -> EltwiseTable<F, NL> {
EltwiseTable {
table_input: cs.lookup_table_column(),
table_output: cs.lookup_table_column(),
is_assigned: false,
scaling_params: scaling_params.to_vec(),
eltwise_params,
bits,
_marker: PhantomData,
}
Expand Down Expand Up @@ -94,7 +98,13 @@ impl<F: FieldExt, NL: Nonlinearity<F>> EltwiseTable<F, NL> {
|| format!("nl_o_col row {}", row_offset),
self.table_output,
row_offset,
|| Value::known(NL::nonlinearity(int_input, &self.scaling_params)),
|| {
Value::known(NL::nonlinearity(
int_input,
&self.scaling_params,
self.eltwise_params,
))
},
) {
Ok(a) => a,
Err(e) => {
Expand Down Expand Up @@ -133,13 +143,17 @@ impl<F: FieldExt + TensorType, NL: 'static + Nonlinearity<F>> EltwiseConfig<F, N
cs: &mut ConstraintSystem<F>,
input: &VarTensor,
output: &VarTensor,
eltwise_params: Option<&[usize]>,
bits: usize,
scaling_params: &[usize],
eltwise_params: Option<f32>,
) -> [Self; NUM] {
let mut table: Option<Rc<RefCell<EltwiseTable<F, NL>>>> = None;
let configs = (0..NUM)
.map(|_| {
let l = match &table {
None => Self::configure(cs, input, output, eltwise_params),
None => {
Self::configure(cs, input, output, bits, scaling_params, eltwise_params)
}
Some(t) => Self::configure_with_table(cs, input, output, t.clone()),
};
table = Some(l.table.clone());
Expand Down Expand Up @@ -168,8 +182,10 @@ impl<F: FieldExt + TensorType, NL: 'static + Nonlinearity<F>> EltwiseConfig<F, N
let _ = cs.lookup("lk", |cs| {
let qlookup = cs.query_selector(qlookup);
let not_qlookup = Expression::Constant(F::one()) - qlookup.clone();
let (default_x, default_y) =
NL::default_pair(table.borrow().scaling_params.as_slice());
let (default_x, default_y) = NL::default_pair(
table.borrow().scaling_params.as_slice(),
table.borrow().eltwise_params,
);
let (x, y) = input.cartesian_coord(i);
vec![
(
Expand Down Expand Up @@ -221,20 +237,15 @@ impl<F: FieldExt + TensorType, NL: 'static + Nonlinearity<F>> EltwiseConfig<F, N
cs: &mut ConstraintSystem<F>,
input: &VarTensor,
output: &VarTensor,
eltwise_params: Option<&[usize]>,
bits: usize,
scaling_params: &[usize],
eltwise_params: Option<f32>,
) -> Self {
// will fail if not supplied
let params = match eltwise_params {
Some(p) => p,
None => {
panic!("failed to supply eltwise parameters")
}
};
let bits = params[0];
let table = Rc::new(RefCell::new(EltwiseTable::<F, NL>::configure(
cs,
bits,
&params[1..],
scaling_params,
eltwise_params,
)));
Self::configure_with_table(cs, input, output, table)
}
Expand All @@ -259,6 +270,7 @@ impl<F: FieldExt + TensorType, NL: 'static + Nonlinearity<F>> EltwiseConfig<F, N
<NL as Nonlinearity<F>>::nonlinearity(
felt_to_i32(f.evaluate()),
&self.table.borrow().scaling_params,
self.table.borrow().eltwise_params,
)
})
}));
Expand All @@ -283,11 +295,11 @@ impl<F: FieldExt + TensorType, NL: 'static + Nonlinearity<F>> EltwiseConfig<F, N
#[allow(missing_docs)]
// Now implement nonlinearity functions like this
#[derive(Clone, Debug)]
pub struct ReLu<F> {
pub struct ReLU<F> {
_marker: PhantomData<F>,
}
impl<F: FieldExt> Nonlinearity<F> for ReLu<F> {
fn nonlinearity(x: i32, scale: &[usize]) -> F {
impl<F: FieldExt> Nonlinearity<F> for ReLU<F> {
fn nonlinearity(x: i32, scale: &[usize], _: Option<f32>) -> F {
if x < 0 {
F::zero()
} else {
Expand All @@ -298,6 +310,24 @@ impl<F: FieldExt> Nonlinearity<F> for ReLu<F> {
}
}

#[allow(missing_docs)]
#[derive(Clone, Debug)]
pub struct LeakyReLU<F> {
_marker: PhantomData<F>,
}

impl<F: FieldExt> Nonlinearity<F> for LeakyReLU<F> {
fn nonlinearity(x: i32, scale: &[usize], slope: Option<f32>) -> F {
if x < 0 {
let d_inv_x = slope.unwrap() * (x as f32) / (scale[0] as f32);
let rounded = d_inv_x.round();
fieldutils::i32_to_felt(rounded as i32)
} else {
fieldutils::i32_to_felt(x)
}
}
}

#[allow(missing_docs)]
#[derive(Clone, Debug)]
pub struct Sigmoid<F> {
Expand All @@ -306,7 +336,7 @@ pub struct Sigmoid<F> {
// L is our implicit or explicit denominator (fixed point d)
// Usually want K=L
impl<F: FieldExt> Nonlinearity<F> for Sigmoid<F> {
fn nonlinearity(x: i32, scale: &[usize]) -> F {
fn nonlinearity(x: i32, scale: &[usize], _: Option<f32>) -> F {
let kix = (x as f32) / (scale[0] as f32);
let fout = (scale[1] as f32) / (1.0 + (-kix).exp());
let rounded = fout.round();
Expand All @@ -320,7 +350,7 @@ pub struct DivideBy<F> {
_marker: PhantomData<F>,
}
impl<F: FieldExt> Nonlinearity<F> for DivideBy<F> {
fn nonlinearity(x: i32, scale: &[usize]) -> F {
fn nonlinearity(x: i32, scale: &[usize], _: Option<f32>) -> F {
let d_inv_x = (x as f32) / (scale[0] as f32);
let rounded = d_inv_x.round();
fieldutils::i32_to_felt(rounded as i32)
Expand Down Expand Up @@ -359,7 +389,7 @@ mod tests {
.map(|_| VarTensor::new_advice(cs, 4, 1, vec![1], true, 512))
.collect::<Vec<_>>();

Self::Config::configure(cs, &advices[0], &advices[1], Some(&[2, 1]))
Self::Config::configure(cs, &advices[0], &advices[1], 2, &[1], None)
}

fn synthesize(
Expand All @@ -376,33 +406,46 @@ mod tests {
#[test]
fn test_eltrelunl() {
for i in -127..127 {
let r = <ReLu<F> as Nonlinearity<F>>::nonlinearity(i, &[1]);
let r = <ReLU<F> as Nonlinearity<F>>::nonlinearity(i, &[1], None);
if i <= 0 {
assert_eq!(r, F::from(0_u64))
} else {
assert_eq!(r, F::from(i as u64))
}
}
}

#[test]
fn test_eltleakyrelunl() {
for i in -127..127 {
let r = <LeakyReLU<F> as Nonlinearity<F>>::nonlinearity(i, &[1], Some(0.05));
if i <= 0 {
assert!(r == F::from(0_u64))
println!("{:?}", (0.05 * i as f32));
assert_eq!(r, -F::from(-(0.05 * i as f32).round() as u64))
} else {
assert!(r == F::from(i as u64))
assert_eq!(r, F::from(i as u64))
}
}
}

#[test]
fn test_eltsigmoid() {
for i in -127..127 {
let r = <Sigmoid<F> as Nonlinearity<F>>::nonlinearity(i, &[1, 1]);
let r = <Sigmoid<F> as Nonlinearity<F>>::nonlinearity(i, &[1, 1], None);
let exp_sig = (1.0 / (1.0 + (-i as f32).exp())).round();
assert!(r == F::from(exp_sig as u64))
assert_eq!(r, F::from(exp_sig as u64))
}
}

#[test]
fn test_eltdivide() {
for i in -127..127 {
let r = <DivideBy<F> as Nonlinearity<F>>::nonlinearity(i, &[1]);
let r = <DivideBy<F> as Nonlinearity<F>>::nonlinearity(i, &[1], None);
println!("{:?}, {:?}, {:?}", i, r, F::from(-i as u64));
if i <= 0 {
assert!(r == -F::from(-i as u64))
assert_eq!(r, -F::from(-i as u64))
} else {
assert!(r == F::from(i as u64))
assert_eq!(r, F::from(i as u64))
}
}
}
Expand All @@ -411,13 +454,13 @@ mod tests {
fn relucircuit() {
let input: Tensor<Value<F>> =
Tensor::new(Some(&[Value::<F>::known(F::from(1_u64))]), &[1]).unwrap();
let assigned: Nonlin1d<F, ReLu<F>> = Nonlin1d {
let assigned: Nonlin1d<F, ReLU<F>> = Nonlin1d {
input: ValTensor::from(input.clone()),
output: ValTensor::from(input),
_marker: PhantomData,
};

let circuit = NLCircuit::<F, ReLu<F>> {
let circuit = NLCircuit::<F, ReLU<F>> {
assigned,
_marker: PhantomData,
};
Expand Down
Loading

0 comments on commit d0b7ae2

Please sign in to comment.