-
Notifications
You must be signed in to change notification settings - Fork 152
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
lzmisscc
committed
Jan 30, 2022
1 parent
585d302
commit d8615d3
Showing
1 changed file
with
274 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,274 @@ | ||
# | ||
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import os | ||
import sys | ||
|
||
from numpy.core.fromnumeric import trace | ||
sys.path.append("./") | ||
|
||
import logging | ||
import argparse | ||
|
||
import numpy as np | ||
import tensorrt as trt | ||
import pycuda.driver as cuda | ||
import pycuda.autoinit | ||
import traceback | ||
|
||
from yolort.v5.utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages | ||
|
||
logging.basicConfig(level=logging.INFO) | ||
logging.getLogger("EngineBuilder").setLevel(logging.INFO) | ||
log = logging.getLogger("EngineBuilder") | ||
|
||
|
||
# Define some parameters | ||
img_size = [320, 320] | ||
stride = 32 | ||
score_thresh = 0.35 | ||
iou_thresh = 0.45 | ||
detections_per_img = 100 | ||
half = False | ||
img_source = "val2017/" | ||
|
||
|
||
class ImageBatcher: | ||
def __init__(self, calib_shape=None, calib_dtype=None) -> None: | ||
self.dataset = LoadImages(img_source, img_size=img_size, stride=stride, auto=False) | ||
self.dtype = calib_dtype | ||
self.batch_size = 1 | ||
self.shape = (self.batch_size, 3, *calib_shape) | ||
self.num_images = len(self.dataset) | ||
self.image_index = 0 | ||
|
||
def get_batch(self, ): | ||
return iter(self.dataset) | ||
|
||
|
||
class EngineCalibrator(trt.IInt8EntropyCalibrator2): | ||
""" | ||
Implements the INT8 Entropy Calibrator 2. | ||
""" | ||
|
||
def __init__(self, cache_file): | ||
""" | ||
:param cache_file: The location of the cache file. | ||
""" | ||
super().__init__() | ||
self.cache_file = cache_file | ||
self.image_batcher: ImageBatcher = None | ||
self.batch_allocation = None | ||
self.batch_generator = None | ||
|
||
def set_image_batcher(self, image_batcher: ImageBatcher): | ||
""" | ||
Define the image batcher to use, if any. If using only the cache file, an image batcher doesn't need | ||
to be defined. | ||
:param image_batcher: The ImageBatcher object | ||
""" | ||
self.image_batcher = image_batcher | ||
size = int(np.dtype(self.image_batcher.dtype).itemsize * np.prod(self.image_batcher.shape)) | ||
self.batch_allocation = cuda.mem_alloc(size) | ||
self.batch_generator = self.image_batcher.get_batch() | ||
|
||
def get_batch_size(self): | ||
""" | ||
Overrides from trt.IInt8EntropyCalibrator2. | ||
Get the batch size to use for calibration. | ||
:return: Batch size. | ||
""" | ||
if self.image_batcher: | ||
return self.image_batcher.batch_size | ||
return 1 | ||
|
||
def get_batch(self, names): | ||
""" | ||
Overrides from trt.IInt8EntropyCalibrator2. | ||
Get the next batch to use for calibration, as a list of device memory pointers. | ||
:param names: The names of the inputs, if useful to define the order of inputs. | ||
:return: A list of int-casted memory pointers. | ||
""" | ||
if not self.image_batcher: | ||
return None | ||
|
||
log.info("Calibrating image ...") | ||
try: | ||
path, image, img_raw, _, s = next(self.batch_generator) | ||
image = image[np.newaxis, :, :, :] | ||
batch, _, _, _ = image.shape | ||
self.image_batcher.image_index += 1 | ||
|
||
log.info("Calibrating image {} / {}".format(self.image_batcher.image_index, self.image_batcher.num_images)) | ||
cuda.memcpy_htod(self.batch_allocation, np.ascontiguousarray(batch)) | ||
return [int(self.batch_allocation)] | ||
except StopIteration: | ||
log.info("Finished calibration batches") | ||
return None | ||
except Exception: | ||
traceback.print_exc() | ||
|
||
def read_calibration_cache(self): | ||
""" | ||
Overrides from trt.IInt8EntropyCalibrator2. | ||
Read the calibration cache file stored on disk, if it exists. | ||
:return: The contents of the cache file, if any. | ||
""" | ||
if os.path.exists(self.cache_file): | ||
with open(self.cache_file, "rb") as f: | ||
log.info("Using calibration cache file: {}".format(self.cache_file)) | ||
return f.read() | ||
|
||
def write_calibration_cache(self, cache): | ||
""" | ||
Overrides from trt.IInt8EntropyCalibrator2. | ||
Store the calibration cache to a file on disk. | ||
:param cache: The contents of the calibration cache to store. | ||
""" | ||
with open(self.cache_file, "wb") as f: | ||
log.info("Writing calibration cache data to: {}".format(self.cache_file)) | ||
f.write(cache) | ||
|
||
|
||
class EngineBuilder: | ||
""" | ||
Parses an ONNX graph and builds a TensorRT engine from it. | ||
""" | ||
|
||
def __init__(self, verbose=False): | ||
""" | ||
:param verbose: If enabled, a higher verbosity level will be set on the TensorRT logger. | ||
""" | ||
self.trt_logger = trt.Logger(trt.Logger.INFO) | ||
if verbose: | ||
self.trt_logger.min_severity = trt.Logger.Severity.VERBOSE | ||
|
||
trt.init_libnvinfer_plugins(self.trt_logger, namespace="") | ||
|
||
self.builder = trt.Builder(self.trt_logger) | ||
self.config = self.builder.create_builder_config() | ||
self.config.max_workspace_size = 8 * (2 ** 30) # 8 GB | ||
|
||
self.batch_size = None | ||
self.network = None | ||
self.parser = None | ||
|
||
def create_network(self, onnx_path): | ||
""" | ||
Parse the ONNX graph and create the corresponding TensorRT network definition. | ||
:param onnx_path: The path to the ONNX graph to load. | ||
""" | ||
network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) | ||
|
||
self.network = self.builder.create_network(network_flags) | ||
self.parser = trt.OnnxParser(self.network, self.trt_logger) | ||
|
||
onnx_path = os.path.realpath(onnx_path) | ||
with open(onnx_path, "rb") as f: | ||
if not self.parser.parse(f.read()): | ||
log.error("Failed to load ONNX file: {}".format(onnx_path)) | ||
for error in range(self.parser.num_errors): | ||
log.error(self.parser.get_error(error)) | ||
sys.exit(1) | ||
|
||
inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] | ||
outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] | ||
|
||
log.info("Network Description") | ||
for input in inputs: | ||
self.batch_size = input.shape[0] | ||
log.info("Input '{}' with shape {} and dtype {}".format(input.name, input.shape, input.dtype)) | ||
for output in outputs: | ||
log.info("Output '{}' with shape {} and dtype {}".format(output.name, output.shape, output.dtype)) | ||
assert self.batch_size > 0 | ||
self.builder.max_batch_size = self.batch_size | ||
|
||
def create_engine(self, engine_path, precision, calib_input=None, calib_cache=None, calib_num_images=25000, | ||
calib_batch_size=8, calib_preprocessor=None): | ||
""" | ||
Build the TensorRT engine and serialize it to disk. | ||
:param engine_path: The path where to serialize the engine to. | ||
:param precision: The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'. | ||
:param calib_input: The path to a directory holding the calibration images. | ||
:param calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. | ||
:param calib_num_images: The maximum number of images to use for calibration. | ||
:param calib_batch_size: The batch size to use for the calibration process. | ||
:param calib_preprocessor: The ImageBatcher preprocessor algorithm to use. | ||
""" | ||
engine_path = os.path.realpath(engine_path) | ||
engine_dir = os.path.dirname(engine_path) | ||
os.makedirs(engine_dir, exist_ok=True) | ||
log.info("Building {} Engine in {}".format(precision, engine_path)) | ||
|
||
inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] | ||
|
||
if precision == "fp16": | ||
if not self.builder.platform_has_fast_fp16: | ||
log.warning("FP16 is not supported natively on this platform/device") | ||
else: | ||
self.config.set_flag(trt.BuilderFlag.FP16) | ||
elif precision == "int8": | ||
if not self.builder.platform_has_fast_int8: | ||
log.warning("INT8 is not supported natively on this platform/device") | ||
else: | ||
self.config.set_flag(trt.BuilderFlag.INT8) | ||
self.config.int8_calibrator = EngineCalibrator(calib_cache) | ||
if not os.path.exists(calib_cache): | ||
calib_shape = [calib_batch_size] + list(inputs[0].shape[1:]) | ||
calib_dtype = trt.nptype(inputs[0].dtype) | ||
self.config.int8_calibrator.set_image_batcher( | ||
ImageBatcher(calib_shape, calib_dtype) | ||
) | ||
|
||
with self.builder.build_engine(self.network, self.config) as engine: | ||
with open(engine_path, "wb") as f: | ||
log.info("Serializing engine to file: {:}".format(engine_path)) | ||
f.write(engine.serialize()) | ||
|
||
|
||
def main(args): | ||
builder = EngineBuilder(args.verbose) | ||
builder.create_network(args.onnx) | ||
builder.create_engine(args.engine, args.precision, args.calib_input, args.calib_cache, args.calib_num_images, | ||
args.calib_batch_size, args.calib_preprocessor) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("-o", "--onnx", help="The input ONNX model file to load") | ||
parser.add_argument("-e", "--engine", help="The output path for the TRT engine") | ||
parser.add_argument("-p", "--precision", default="fp16", choices=["fp32", "fp16", "int8"], | ||
help="The precision mode to build in, either 'fp32', 'fp16' or 'int8', default: 'fp16'") | ||
parser.add_argument("-v", "--verbose", action="store_true", help="Enable more verbose log output") | ||
parser.add_argument("--calib_input", help="The directory holding images to use for calibration") | ||
parser.add_argument("--calib_cache", default="./calibration.cache", | ||
help="The file path for INT8 calibration cache to use, default: ./calibration.cache") | ||
parser.add_argument("--calib_num_images", default=10, type=int, | ||
help="The maximum number of images to use for calibration, default: 25000") | ||
parser.add_argument("--calib_batch_size", default=1, type=int, | ||
help="The batch size for the calibration process, default: 1") | ||
parser.add_argument("--calib_preprocessor", default="V2", choices=["V1", "V1MS", "V2"], | ||
help="Set the calibration image preprocessor to use, either 'V2', 'V1' or 'V1MS', default: V2") | ||
args = parser.parse_args() | ||
if not all([args.onnx, args.engine]): | ||
parser.print_help() | ||
log.error("These arguments are required: --onnx and --engine") | ||
sys.exit(1) | ||
if args.precision == "int8" and not any([args.calib_input, args.calib_cache]): | ||
parser.print_help() | ||
log.error("When building in int8 precision, either --calib_input or --calib_cache are required") | ||
sys.exit(1) | ||
main(args) |