This repository contains the code and models for the following WACV'21 paper:
If you find this code useful in your research then please cite
@misc{zhu2020msnet,
title={MSNet: A Multilevel Instance Segmentation Network for Natural Disaster Damage Assessment in Aerial Videos},
author={Xiaoyu Zhu and Junwei Liang and Alexander Hauptmann},
year={2020},
eprint={2006.16479},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
-
Download links: Google Drive
-
The dataset has 1,030 images with 2,961 annotations. Each annotation includes the damage segmentation, damage bounding boxes, and house bounding boxes.
Replace /usr/local/lib/python3.6/dist-packages/pycocotools/coco.py and /usr/local/lib/python3.6/dist-packages/pycocotools/cocoeval.py with files on /env folder. And run:
$ cd ./examples/msnet/
$ python train.py --config DATA.BASEDIR=data_dir MODE_FPN=True \
DATA.VAL=('val',) DATA.TRAIN=('train',) \
TRAIN.BASE_LR=1e-3 TRAIN.EVAL_PERIOD=1 TRAIN.LR_SCHEDULE=[3000] \
PREPROC.TRAIN_SHORT_EDGE_SIZE=[600,1200] TRAIN.CHECKPOINT_PERIOD=1 DATA.NUM_WORKERS=1 \
--load checkpoint_dir\
--logdir log_dir
$ cd ./examples/msnet/
$ python predict.py \
--config DATA.BASEDIR=data_dir MODE_FPN=True \
DATA.VAL=('val',) DATA.TRAIN=('train',) \
--load checkpoint_dir --evaluate output_json_file
Follow demo.ipynb to run pre-trained models on custom dataset and visulize the prediction results.
Download links: Google Drive
Our dataset, code, and models are only for ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY.
Our MSNet is based on Tensorpack.