Skip to content

zgzxy001/MSNET

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MSNET

This repository contains the code and models for the following WACV'21 paper:

MSNet: A Multilevel Instance Segmentation Network for Natural Disaster Damage Assessment in Aerial Videos

If you find this code useful in your research then please cite

@misc{zhu2020msnet,
    title={MSNet: A Multilevel Instance Segmentation Network for Natural Disaster Damage Assessment in Aerial Videos},
    author={Xiaoyu Zhu and Junwei Liang and Alexander Hauptmann},
    year={2020},
    eprint={2006.16479},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

The ISBDA Dataset

  • Download links: Google Drive

  • The dataset has 1,030 images with 2,961 annotations. Each annotation includes the damage segmentation, damage bounding boxes, and house bounding boxes.

Code

Training

Replace /usr/local/lib/python3.6/dist-packages/pycocotools/coco.py and /usr/local/lib/python3.6/dist-packages/pycocotools/cocoeval.py with files on /env folder. And run:

$ cd ./examples/msnet/
$ python train.py --config DATA.BASEDIR=data_dir MODE_FPN=True \
  DATA.VAL=('val',)  DATA.TRAIN=('train',)  \
  TRAIN.BASE_LR=1e-3 TRAIN.EVAL_PERIOD=1 TRAIN.LR_SCHEDULE=[3000]  \
  PREPROC.TRAIN_SHORT_EDGE_SIZE=[600,1200] TRAIN.CHECKPOINT_PERIOD=1 DATA.NUM_WORKERS=1 \
  --load  checkpoint_dir\
  --logdir log_dir

Inferencing

$ cd ./examples/msnet/
$ python predict.py \
 --config DATA.BASEDIR=data_dir MODE_FPN=True \
 DATA.VAL=('val',)  DATA.TRAIN=('train',) \
 --load checkpoint_dir --evaluate output_json_file

Google Colab Demo

Follow demo.ipynb to run pre-trained models on custom dataset and visulize the prediction results.

Pre-Trained Model

Download links: Google Drive

License

Our dataset, code, and models are only for ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY.

Acknowledgements

Our MSNet is based on Tensorpack.