ivector/
-
conf/
: configure file for mfcc and vad -
wav/
: test audio (you can also use your own wav path, see Step 1)- Only supprot flac (install flac), wav and sph (install sph2pipe )
-
model_3000h/
: pre-trained model -
enroll.sh
: main process fille -
data/
: save extracted features (It's a generated file)utt2spk, wav.scp
generate two files through make_data.pyspk2utt
: generate from utt2spklog/
: save all logstmp/
: save all tmp files
xvector/
-
conf/
: configure file for mfcc and vad -
wav/
: test audio (you can also use your own wav path, see Step 1)- Only supprot flac (install flac), wav and sph (install sph2pipe )
-
exp/
: pre-trained model -
enroll.sh
: main process fille -
data/
: save extracted features (It's a generated file)utt2spk, wav.scp
generate two files through make_data.pyspk2utt
: generate from utt2spklog/
: save all logstmp/
: save all tmp files
format_norm.py
: change ark format to npz format
-
First, install Kaldi.
-
Then, step into
ivector/
orxvector/
folder -
Change KALDI_ROOT in
path.sh
to your own kaldi root -
Add link:
ln -s $KALDI_ROOT/egs/sre16/v2/steps ./
ln -s $KALDI_ROOT/egs/sre16/v2/sid ./
ln -s $KALDI_ROOT/egs/sre16/v2/utils ./
Refers to pre-trained xvector model in kaldi and kaidi-sre-code
- Extract ivector: cd
ivector
and runenroll.sh
to extract ivector
bash enroll.sh wav_path
# for example: bash enroll.sh ./wav
- Extract xvector: cd
xvector
and runenroll.sh
to extract ivector
## Case 1: extract xvector without speaker infos
# for example: bash enroll.sh ./wav 1
bash enroll.sh wav_path 1
## Case 2: extract xvector with speaker infos
####Step 1: Generate speaker.txt files
####Only suitable for files like 'wav_root/speaker_id/wav_name'
####Other format, you should write your own generate_speaker.py
python generate_speaker.py wav_dir speaker.txt
####Step 2: extract xvector with speaker infos
####For example, bash enroll.sh ./speaker.txt 2
bash enroll.sh ./speaker.txt 2
In this section, we convert ivector and xvector from ark type to array type
i-vector in data/feat/ivectors_enroll_mfcc
spk_ivector.ark
i-vector for each speakerivector.1.ark
: i-vector for each utturance (400-d i-vector)
x-vector in data/feat/xvectors_enroll_mfcc
spk_xvector.ark
x-vector for each speakerxvector.1.ark
: x-vector for each utturance (512-d x-vector)
## print name and feats from ark to txt
$KALDI_ROOT/src/bin/copy-vector ark:ivector/data/feat/ivectors_enroll_mfcc/ivector.1.ark ark,t:- >ivector.txt
$KALDI_ROOT/src/bin/copy-vector ark:xvector/data/feat/xvectors_enroll_mfcc/xvector.1.ark ark,t:- >xvector.txt
## Or you can change ark format to np.array format, which has (data_path ['pic_path'], ivector or xvector)
python format_norm.py --vector_path='xvector.txt' --save_path='x_vector.npz'
python format_norm.py --vector_path='ivector.txt' --save_path='i_vector.npz'
## combine different files
utils/combine_data.sh
## make xxx fits to the kaldi format
utils/fix_data_dir.sh xxx
## gain subset of data
utils/subset_data_dir.sh
## file exists and dir exists
if [ -d "./data" ];then # dictionary exists
if [ -f "./data/1.txt" ];then # file exists
## xvector/run.sh
Has four folder:
sre_combined (source domain, argument data, for training)
sre16_major (unlabeded target domain for model adaption)
sre16_eval_enroll(labeded target domain for train)
sre16_eval_test(unlabeded target domain for test)
Main stream: xvector->mean->transform(LDA)->len normalize->classifier(PLDA/adapt-PLDA)
## ark: split by space and print the third one
echo '1 2 3' |awk '{print $3}' # print 3