Skip to content

Progressive Self-Guided Loss for Salient Object Detection (TIP 2021)

Notifications You must be signed in to change notification settings

ysyscool/PSGLoss

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PSGLoss

Progressive Self-Guided Loss for Salient Object Detection

This repository contains the reference code for our TIP 2021 paper. The pdf can be found in this link

If you use any part of our code, or PSGLoss is useful for your research, please consider citing:

@ARTICLE{yang2021progressive,
  author={Yang, Sheng and Lin, Weisi and Lin, Guosheng and Jiang, Qiuping and Liu, Zichuan},
  journal={IEEE Transactions on Image Processing}, 
  title={Progressive Self-Guided Loss for Salient Object Detection}, 
  year={2021},
  volume={30},
  number={},
  pages={8426-8438},
  doi={10.1109/TIP.2021.3113794}}

model ckpt and results can be found in this link

Requirements

  • Pytorch 0.4 !!!
  • opencv-python

Train/Test

Train:

 CUDA_VISIBLE_DEVICES=0 python ystrain.py --batchsize 20 --lr 5e-5 --trainsize 352 --loss dicebce --randomflip --psgloss 

Test:

CUDA_VISIBLE_DEVICES=0 python test_ys.py --checkpointfile xxxx --batchsize 20 --lr 5e-5  --loss dicebce --testsize 352

Acknowledgments

Code and data prepration largely benefits from CPD

About

Progressive Self-Guided Loss for Salient Object Detection (TIP 2021)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages