Skip to content

Latest commit

 

History

History
245 lines (195 loc) · 5.74 KB

File metadata and controls

245 lines (195 loc) · 5.74 KB

English Version

题目描述

给你一个用无限二维网格表示的花园,每一个 整数坐标处都有一棵苹果树。整数坐标 (i, j) 处的苹果树有 |i| + |j| 个苹果。

你将会买下正中心坐标是 (0, 0) 的一块 正方形土地 ,且每条边都与两条坐标轴之一平行。

给你一个整数 neededApples ,请你返回土地的 最小周长 ,使得 至少 有 neededApples 个苹果在土地 里面或者边缘上

|x| 的值定义为:

  • 如果 x >= 0 ,那么值为 x
  • 如果 x < 0 ,那么值为 -x

 

示例 1:

输入:neededApples = 1
输出:8
解释:边长长度为 1 的正方形不包含任何苹果。
但是边长为 2 的正方形包含 12 个苹果(如上图所示)。
周长为 2 * 4 = 8 。

示例 2:

输入:neededApples = 13
输出:16

示例 3:

输入:neededApples = 1000000000
输出:5040

 

提示:

  • 1 <= neededApples <= 1015

解法

方法一:数学 + 枚举

假设正方形右上角坐标为 $(n, n)$,那么它的边长为 $2n$,周长为 $8n$,里面的苹果总数为:

$$ \begin{aligned} &\sum_{x=-n}^{n} \sum_{y=-n}^{n} |x| + |y| \\ \end{aligned} $$

由于 $x$$y$ 是对称的,所以可以化简为:

$$ \begin{aligned} &\sum_{x=-n}^{n} \sum_{y=-n}^{n} |x| + |y| \\ &= 2 \sum_{x=-n}^{n} \sum_{y=-n}^{n} |x| \\ &= 2 \sum_{x=-n}^{n} (2n + 1) |x| \\ &= 2 (2n + 1) \sum_{x=-n}^{n} |x| \\ &= 2n(n+1)(2n+1) \end{aligned} $$

所以,我们只需要枚举 $n$,直到找到第一个满足 $2n(n+1)(2n+1) \geq neededApples$$n$ 即可。

时间复杂度 $O(m^{\frac{1}{3}})$,其中 $m$$neededApples$ 的值。空间复杂度 $O(1)$

方法二:二分查找

我们也可以二分枚举 $n$,时间复杂度 $O(\log m)$

Python3

class Solution:
    def minimumPerimeter(self, neededApples: int) -> int:
        x = 1
        while 2 * x * (x + 1) * (2 * x + 1) < neededApples:
            x += 1
        return x * 8
class Solution:
    def minimumPerimeter(self, neededApples: int) -> int:
        l, r = 1, 100000
        while l < r:
            mid = (l + r) >> 1
            if 2 * mid * (mid + 1) * (2 * mid + 1) >= neededApples:
                r = mid
            else:
                l = mid + 1
        return l * 8

Java

class Solution {
    public long minimumPerimeter(long neededApples) {
        long x = 1;
        while (2 * x * (x + 1) * (2 * x + 1) < neededApples) {
            ++x;
        }
        return 8 * x;
    }
}
class Solution {
    public long minimumPerimeter(long neededApples) {
        long l = 1, r = 100000;
        while (l < r) {
            long mid = (l + r) >> 1;
            if (2 * mid * (mid + 1) * (2 * mid + 1) >= neededApples) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l * 8;
    }
}

C++

class Solution {
public:
    long long minimumPerimeter(long long neededApples) {
        long long x = 1;
        while (2 * x * (x + 1) * (2 * x + 1) < neededApples) {
            ++x;
        }
        return 8 * x;
    }
};
class Solution {
public:
    long long minimumPerimeter(long long neededApples) {
        long long l = 1, r = 100000;
        while (l < r) {
            long mid = (l + r) >> 1;
            if (2 * mid * (mid + 1) * (2 * mid + 1) >= neededApples) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l * 8;
    }
};

Go

func minimumPerimeter(neededApples int64) int64 {
	var x int64 = 1
	for 2*x*(x+1)*(2*x+1) < neededApples {
		x++
	}
	return 8 * x
}
func minimumPerimeter(neededApples int64) int64 {
	var l, r int64 = 1, 100000
	for l < r {
		mid := (l + r) >> 1
		if 2*mid*(mid+1)*(2*mid+1) >= neededApples {
			r = mid
		} else {
			l = mid + 1
		}
	}
	return l * 8
}

TypeScript

function minimumPerimeter(neededApples: number): number {
    let x = 1;
    while (2 * x * (x + 1) * (2 * x + 1) < neededApples) {
        ++x;
    }
    return 8 * x;
}
function minimumPerimeter(neededApples: number): number {
    let l = 1;
    let r = 100000;
    while (l < r) {
        const mid = (l + r) >> 1;
        if (2 * mid * (mid + 1) * (2 * mid + 1) >= neededApples) {
            r = mid;
        } else {
            l = mid + 1;
        }
    }
    return 8 * l;
}

...