Skip to content

Natural Language Processing Project - CS622

License

Notifications You must be signed in to change notification settings

yottabytedev/humor_detection

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Humor Classifier

Dataset Description

Dataset used Link

It contains five pickle files:

Positive Samples

  1. Humorous One-liners
  2. Longer Jokes

Negative Samples

  1. Reuters headlines
  2. English Proverbs
  3. Wikipedia Sentences

Conclusion:

Models Description Accuracy F1 Score
1. Simple feed-forward network with dense layers on top of embedding layer 0.9660 0.9231
2. Without pre-trained word embeddings 0.9839 0.9568
3. Using Simple RNN layer on top of embedding layer 0.9686 0.9413
4. Using LSTM layer on top of the embedding layer 0.9587 0.9514
5. Using two Conv1D layers on top of the Embedding layer 0.9674 0.9469
7. Using GRU layer on top of Conv1D layer 0.9617 0.9462
8. Using two GRU layers on top of two Conv1D layers 0.9599 0.9472

Team Members:

About

Natural Language Processing Project - CS622

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%