forked from opea-project/GenAIComps
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
dataprep for pgvector (opea-project#201)
Signed-off-by: V, Ganesan <[email protected]> Signed-off-by: Yogesh Pandey <[email protected]>
- Loading branch information
1 parent
7fcf255
commit b536d25
Showing
13 changed files
with
469 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
# Dataprep Microservice with PGVector | ||
|
||
# 🚀1. Start Microservice with Python(Option 1) | ||
|
||
## 1.1 Install Requirements | ||
|
||
```bash | ||
pip install -r requirements.txt | ||
``` | ||
|
||
## 1.2 Start PGVector | ||
|
||
Please refer to this [readme](../../../vectorstores/langchain/pgvcetor/README.md). | ||
|
||
## 1.3 Setup Environment Variables | ||
|
||
```bash | ||
export PG_CONNECTION_STRING=postgresql+psycopg2://testuser:testpwd@${your_ip}:5432/vectordb | ||
export INDEX_NAME=${your_index_name} | ||
export LANGCHAIN_TRACING_V2=true | ||
export LANGCHAIN_API_KEY=${your_langchain_api_key} | ||
export LANGCHAIN_PROJECT="opea/gen-ai-comps:dataprep" | ||
``` | ||
|
||
## 1.4 Start Document Preparation Microservice for PGVector with Python Script | ||
|
||
Start document preparation microservice for PGVector with below command. | ||
|
||
```bash | ||
python prepare_doc_pgvector.py | ||
``` | ||
|
||
# 🚀2. Start Microservice with Docker (Option 2) | ||
|
||
## 2.1 Start PGVector | ||
|
||
Please refer to this [readme](../../../vectorstores/langchain/pgvector/README.md). | ||
|
||
## 2.2 Setup Environment Variables | ||
|
||
```bash | ||
export PG_CONNECTION_STRING=postgresql+psycopg2://testuser:testpwd@${your_ip}:5432/vectordb | ||
export INDEX_NAME=${your_index_name} | ||
export LANGCHAIN_TRACING_V2=true | ||
export LANGCHAIN_API_KEY=${your_langchain_api_key} | ||
export LANGCHAIN_PROJECT="opea/dataprep" | ||
``` | ||
|
||
## 2.3 Build Docker Image | ||
|
||
```bash | ||
cd comps/dataprep/langchain/pgvector/docker | ||
docker build -t opea/dataprep-pgvector:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/langchain/pgvector/docker/Dockerfile . | ||
``` | ||
|
||
## 2.4 Run Docker with CLI (Option A) | ||
|
||
```bash | ||
docker run -d --name="dataprep-pgvector" -p 6007:6007 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e PG_CONNECTION_STRING=$PG_CONNECTION_STRING -e INDEX_NAME=$INDEX_NAME -e TEI_ENDPOINT=$TEI_ENDPOINT opea/dataprep-pgvector:latest | ||
``` | ||
|
||
## 2.5 Run with Docker Compose (Option B) | ||
|
||
```bash | ||
cd comps/dataprep/langchain/pgvector/docker | ||
docker compose -f docker-compose-dataprep-pgvector.yaml up -d | ||
``` | ||
|
||
# 🚀3. Consume Microservice | ||
|
||
Once document preparation microservice for PGVector is started, user can use below command to invoke the microservice to convert the document to embedding and save to the database. | ||
|
||
```bash | ||
curl -X POST \ | ||
-H "Content-Type: application/json" \ | ||
-d '{"path":"/path/to/document"}' \ | ||
http://localhost:6007/v1/dataprep | ||
``` |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import os | ||
|
||
# Embedding model | ||
|
||
EMBED_MODEL = os.getenv("EMBED_MODEL", "BAAI/bge-base-en-v1.5") | ||
|
||
PG_CONNECTION_STRING = os.getenv("PG_CONNECTION_STRING", "localhost") | ||
|
||
# Vector Index Configuration | ||
INDEX_NAME = os.getenv("INDEX_NAME", "rag-pgvector") | ||
|
||
# chunk parameters | ||
CHUNK_SIZE = os.getenv("CHUNK_SIZE", 1500) | ||
CHUNK_OVERLAP = os.getenv("CHUNK_OVERLAP", 100) | ||
|
||
current_file_path = os.path.abspath(__file__) | ||
parent_dir = os.path.dirname(current_file_path) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
|
||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
FROM python:3.11-slim | ||
|
||
ENV LANG C.UTF-8 | ||
|
||
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \ | ||
build-essential \ | ||
libgl1-mesa-glx \ | ||
libjemalloc-dev \ | ||
vim | ||
|
||
RUN useradd -m -s /bin/bash user && \ | ||
mkdir -p /home/user && \ | ||
chown -R user /home/user/ | ||
|
||
USER user | ||
|
||
COPY comps /home/user/comps | ||
|
||
RUN pip install --no-cache-dir --upgrade pip setuptools && \ | ||
pip install --no-cache-dir -r /home/user/comps/dataprep/pgvector/langchain/requirements.txt | ||
|
||
ENV PYTHONPATH=$PYTHONPATH:/home/user | ||
|
||
USER root | ||
|
||
RUN mkdir -p /home/user/comps/dataprep/pgvector/langchain/uploaded_files && chown -R user /home/user/comps/dataprep/pgvector/langchain/uploaded_files | ||
|
||
USER user | ||
|
||
WORKDIR /home/user/comps/dataprep/pgvector/langchain | ||
|
||
ENTRYPOINT ["python", "prepare_doc_pgvector.py"] | ||
|
39 changes: 39 additions & 0 deletions
39
comps/dataprep/pgvector/langchain/docker/docker-compose-dataprep-pgvector.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
version: "3" | ||
services: | ||
pgvector-vector-db: | ||
hostname: db | ||
container_name: pgvector-vector-db | ||
image: pgvector/pgvector:0.7.0-pg16 | ||
ports: | ||
- "5432:5432" | ||
restart: always | ||
ipc: host | ||
environment: | ||
- POSTGRES_DB=vectordb | ||
- POSTGRES_USER=testuser | ||
- POSTGRES_PASSWORD=testpwd | ||
- POSTGRES_HOST_AUTH_METHOD=trust | ||
volumes: | ||
- ./init.sql:/docker-entrypoint-initdb.d/init.sql | ||
|
||
dataprep-pgvector: | ||
image: opea/dataprep-pgvector:latest | ||
container_name: dataprep-pgvector | ||
ports: | ||
- "6007:6007" | ||
ipc: host | ||
environment: | ||
http_proxy: ${http_proxy} | ||
https_proxy: ${https_proxy} | ||
PG_CONNECTION_STRING: ${PG_CONNECTION_STRING} | ||
INDEX_NAME: ${INDEX_NAME} | ||
TEI_ENDPOINT: ${TEI_ENDPOINT} | ||
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY} | ||
restart: unless-stopped | ||
|
||
networks: | ||
default: | ||
driver: bridge |
140 changes: 140 additions & 0 deletions
140
comps/dataprep/pgvector/langchain/prepare_doc_pgvector.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import json | ||
import os | ||
import uuid | ||
from pathlib import Path | ||
from typing import List, Optional, Union | ||
|
||
from config import CHUNK_OVERLAP, CHUNK_SIZE, EMBED_MODEL, INDEX_NAME, PG_CONNECTION_STRING | ||
from fastapi import File, Form, HTTPException, UploadFile | ||
from langchain.text_splitter import RecursiveCharacterTextSplitter | ||
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceHubEmbeddings | ||
from langchain_community.vectorstores import PGVector | ||
from langsmith import traceable | ||
|
||
from comps import DocPath, ServiceType, opea_microservices, register_microservice, register_statistics | ||
from comps.dataprep.utils import document_loader, parse_html | ||
|
||
tei_embedding_endpoint = os.getenv("TEI_ENDPOINT") | ||
|
||
|
||
async def save_file_to_local_disk(save_path: str, file): | ||
save_path = Path(save_path) | ||
with save_path.open("wb") as fout: | ||
try: | ||
content = await file.read() | ||
fout.write(content) | ||
except Exception as e: | ||
print(f"Write file failed. Exception: {e}") | ||
raise HTTPException(status_code=500, detail=f"Write file {save_path} failed. Exception: {e}") | ||
|
||
|
||
def ingest_doc_to_pgvector(doc_path: DocPath): | ||
"""Ingest document to PGVector.""" | ||
doc_path = doc_path.path | ||
print(f"Parsing document {doc_path}.") | ||
|
||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100, add_start_index=True) | ||
content = document_loader(doc_path) | ||
chunks = text_splitter.split_text(content) | ||
print("Done preprocessing. Created ", len(chunks), " chunks of the original pdf") | ||
print("PG Connection", PG_CONNECTION_STRING) | ||
|
||
# Create vectorstore | ||
if tei_embedding_endpoint: | ||
# create embeddings using TEI endpoint service | ||
embedder = HuggingFaceHubEmbeddings(model=tei_embedding_endpoint) | ||
else: | ||
# create embeddings using local embedding model | ||
embedder = HuggingFaceBgeEmbeddings(model_name=EMBED_MODEL) | ||
|
||
# Batch size | ||
batch_size = 32 | ||
num_chunks = len(chunks) | ||
for i in range(0, num_chunks, batch_size): | ||
batch_chunks = chunks[i : i + batch_size] | ||
batch_texts = batch_chunks | ||
|
||
_ = PGVector.from_texts( | ||
texts=batch_texts, embedding=embedder, collection_name=INDEX_NAME, connection_string=PG_CONNECTION_STRING | ||
) | ||
print(f"Processed batch {i//batch_size + 1}/{(num_chunks-1)//batch_size + 1}") | ||
return True | ||
|
||
|
||
def ingest_link_to_pgvector(link_list: List[str]): | ||
data_collection = parse_html(link_list) | ||
|
||
texts = [] | ||
metadatas = [] | ||
for data, meta in data_collection: | ||
doc_id = str(uuid.uuid4()) | ||
metadata = {"source": meta, "identify_id": doc_id} | ||
texts.append(data) | ||
metadatas.append(metadata) | ||
|
||
# Create vectorstore | ||
if tei_embedding_endpoint: | ||
# create embeddings using TEI endpoint service | ||
embedder = HuggingFaceHubEmbeddings(model=tei_embedding_endpoint) | ||
else: | ||
# create embeddings using local embedding model | ||
embedder = HuggingFaceBgeEmbeddings(model_name=EMBED_MODEL) | ||
|
||
_ = PGVector.from_texts( | ||
texts=texts, | ||
embedding=embedder, | ||
metadatas=metadatas, | ||
collection_name=INDEX_NAME, | ||
connection_string=PG_CONNECTION_STRING, | ||
) | ||
|
||
|
||
@register_microservice( | ||
name="opea_service@prepare_doc_pgvector", | ||
service_type=ServiceType.DATAPREP, | ||
endpoint="/v1/dataprep", | ||
host="0.0.0.0", | ||
port=6007, | ||
) | ||
@traceable(run_type="tool") | ||
@register_statistics(names=["opea_service@dataprep_pgvector"]) | ||
async def ingest_documents( | ||
files: Optional[Union[UploadFile, List[UploadFile]]] = File(None), link_list: Optional[str] = Form(None) | ||
): | ||
print(f"files:{files}") | ||
print(f"link_list:{link_list}") | ||
if files and link_list: | ||
raise HTTPException(status_code=400, detail="Provide either a file or a string list, not both.") | ||
|
||
if files: | ||
if not isinstance(files, list): | ||
files = [files] | ||
upload_folder = "./uploaded_files/" | ||
if not os.path.exists(upload_folder): | ||
Path(upload_folder).mkdir(parents=True, exist_ok=True) | ||
for file in files: | ||
save_path = upload_folder + file.filename | ||
await save_file_to_local_disk(save_path, file) | ||
ingest_doc_to_pgvector(DocPath(path=save_path)) | ||
print(f"Successfully saved file {save_path}") | ||
return {"status": 200, "message": "Data preparation succeeded"} | ||
|
||
if link_list: | ||
try: | ||
link_list = json.loads(link_list) # Parse JSON string to list | ||
if not isinstance(link_list, list): | ||
raise HTTPException(status_code=400, detail="link_list should be a list.") | ||
ingest_link_to_pgvector(link_list) | ||
print(f"Successfully saved link list {link_list}") | ||
return {"status": 200, "message": "Data preparation succeeded"} | ||
except json.JSONDecodeError: | ||
raise HTTPException(status_code=400, detail="Invalid JSON format for link_list.") | ||
|
||
raise HTTPException(status_code=400, detail="Must provide either a file or a string list.") | ||
|
||
|
||
if __name__ == "__main__": | ||
opea_microservices["opea_service@prepare_doc_pgvector"].start() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
beautifulsoup4 | ||
docarray[full] | ||
easyocr | ||
fastapi | ||
huggingface_hub | ||
langchain | ||
langchain-community | ||
langsmith | ||
numpy | ||
opentelemetry-api | ||
opentelemetry-exporter-otlp | ||
opentelemetry-sdk | ||
pandas | ||
pgvector==0.2.5 | ||
Pillow | ||
prometheus-fastapi-instrumentator==7.0.0 | ||
psycopg2-binary | ||
pymupdf | ||
python-docx | ||
sentence_transformers | ||
shortuuid |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,13 +1,2 @@ | ||
# Copyright (c) 2024 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 |
Oops, something went wrong.