Pytorch implementation of Iterative Knowledge Distillation for Improved Generative Model Compression based on Deep Convolutional Generative Adversarial Networks (DCGAN) [1] for MNIST [2] datasets.
- you can download
- MNIST dataset: http://yann.lecun.com/exdb/mnist/
- DCGAN
- Original model vs Compressed model
- Ubuntu 16.04 LTS
- NVIDIA GTX 1080 ti
- cuda 10.1
- Python 3.7.3
- pytorch 1.2.0
- torchvision 0.1.8
- matplotlib 3.1.0
- imageio 2.5.0
- scipy 1.3.0
- pillow 6.1.0
- scikit-image 0.15.0
[1] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
(Full paper: https://arxiv.org/pdf/1511.06434.pdf)
[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.