-
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
162 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
--- | ||
layout: post | ||
title: 快速平方根倒数 | ||
date: 2024-04-23 13:00:00 +0800 | ||
categories: algorithm | ||
tags: bit-hack | ||
published: true | ||
--- | ||
|
||
* content | ||
{:toc} | ||
|
||
## 雷神之锤3源码 | ||
|
||
```C | ||
float Q_rsqrt( float number ) | ||
{ | ||
long i; | ||
float x2, y; | ||
const float threehalfs = 1.5F; | ||
|
||
x2 = number * 0.5F; | ||
y = number; | ||
i = * ( long * ) &y; // evil floating point bit level hacking | ||
i = 0x5f3759df - ( i >> 1 ); // what the fuck? | ||
y = * ( float * ) &i; | ||
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration | ||
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed | ||
|
||
return y; | ||
} | ||
``` | ||
## 牛顿迭代 | ||
牛顿迭代公式: | ||
$$ x_{n+1} = x_n - \tfrac{f(x_n)}{f^{\prime}{(x_n)}} $$ | ||
欲求 n 的平方根倒数,构造函数 $$ f(x) = \tfrac{1}{x^2} - n = x^{-2} - n $$,令 f(x) = 0: | ||
$$ | ||
\begin{aligned} | ||
& \quad\,f(x) = \tfrac{1}{x^2} - n = 0\\ | ||
&\Rightarrow \tfrac{1}{x^2} = n\\ | ||
&\Rightarrow x = \tfrac{1}{n^2} | ||
\end{aligned} | ||
$$ | ||
显然当 f(x) = 0 时,x 的值即为 n 的平方根倒数。 | ||
令迭代初始值为 $$ x_0 $$(一般地,迭代初始值使用 $$ x_0 = \tfrac{n}{2} $$): | ||
$$ | ||
\begin{aligned} | ||
& \quad\,x_1 = x_0 - \tfrac{f(x_0)}{f^{\prime}_(x_0)}\\ | ||
&\Rightarrow x_1 = x_0 - \tfrac{{x_0}^{-2} - n}{1}\\ | ||
&\Rightarrow x_1 = x_0 * (1.5 - \tfrac{n}{2} * {x_0}^2) | ||
\end{aligned} | ||
$$ | ||
## IEEE 754 | ||
科学计数法 | ||
normalised numbers | ||
denormalised numbers | ||
NaN | ||
0 & -0 | ||
由 IEEE 754 可知 float 的 long representation 为 $$(E*2^{23} + M)$$ | ||
## 推导 | ||
x 为 float,令 y 为 x 的平方根倒数: | ||
$$ | ||
\begin{aligned} | ||
& \quad\,y = \tfrac{1}{\sqrt{x}} = {x^{-\tfrac{1}{2}}}\\ | ||
&\Rightarrow\log_2 (y)=-\tfrac{1}{2}\log_2 (x) | ||
\end{aligned} | ||
$$ | ||
令 $$E_y$$、$$M_y$$ 和 $$E_x$$、$$M_x$$ 分别为 y 和 x 的指数、小数部分: | ||
$$ | ||
\begin{aligned} | ||
&\Rightarrow \log_2 (2^{(E_y-127)}*(1.0+\tfrac{M_y}{2^{23}})) = -\tfrac{1}{2}\log_2 (2^{(E_x-127)}*(1.0+\tfrac{M_x}{2^{23}}))\\ | ||
&\Rightarrow {(E_y-127)}+\log_2 (1.0+\tfrac{M_y}{2^{23}}) = -\tfrac{1}{2}(E_y-127)-\tfrac{1}{2}\log_2 (1.0+\tfrac{M_x}{2^{23}}) | ||
\end{aligned} | ||
$$ | ||
代入 $$ \log(1+x) \approx x+\mu, x \in [0,1] $$: | ||
$$ | ||
\begin{aligned} | ||
&\Rightarrow {(E_y-127)} + \tfrac{M_y}{2^{23}} + \mu = -\tfrac{1}{2}(E_y-127) - \tfrac{1}{2}(\tfrac{M_x}{2^{23}} + \mu)\\ | ||
&\Rightarrow E_y*{2^{23}} + M_y = \tfrac{3}{2}(127 - \mu)2^{23} - \tfrac{1}{2}(E_x*2^{23} + M_x) | ||
\end{aligned} | ||
$$ | ||
记 $$y^{\prime}$$ $$x^{\prime}$$ 分别为 float 数 y 和 x 的 long representation: | ||
$$ | ||
\begin{aligned} | ||
&\Rightarrow y^{\prime} = \tfrac{3}{2}(127 - \mu)2^{23} - \tfrac{1}{2}x^{\prime}\\ | ||
&\Rightarrow y^{\prime} = \tfrac{3}{2}(127 - \mu)2^{23} - (x^{\prime} >> 1) | ||
\end{aligned} | ||
$$ | ||
$\log_2 10$ | ||
$$\lg_2 10$$ | ||
$$\lg 10$$ | ||
$$lg 10$$ | ||
$$\ln 10$$ | ||
$$ln 10$$ | ||
$$\log_2 10$$ | ||
$$log_2 10$$ | ||
$\sqrt{3x-1}+(1+x)^2$ | ||
$$\sqrt3$$ | ||
$$\sqrt{3}$$ | ||
$$\sqrt{3x-1}$$ | ||
$$\sqrt{3x-1}+(1+x)^2$$ | ||
$10^{10}$ | ||
$\frac{4n^3-6n^2-10n-2k^3-3k^2+8k+12kn+c}{12}$ | ||
$$\frac{4n^3-6n^2-10n-2k^3-3k^2+8k+12kn+c}{12}$$ | ||
$$\frac{4}{12}$$ | ||
$$\tfrac{4}{12}$$ | ||
$$\dfrac{4}{12}$$ | ||
$$\cfrac{4}{12}$$ | ||
## 总结 | ||
现在已经有了平方根运算器,已经不需要这么写了。 | ||
<!-- https://www.youtube.com/watch?v=p8u_k2LIZyo --> | ||
<!-- https://www.zhihu.com/question/26287650 --> | ||
<!-- https://en.wikipedia.org/wiki/Fast_inverse_square_root --> | ||
<!-- https://zh.wikipedia.org/wiki/%E5%B9%B3%E6%96%B9%E6%A0%B9%E5%80%92%E6%95%B0%E9%80%9F%E7%AE%97%E6%B3%95 --> | ||
<!-- https://zhuanlan.zhihu.com/p/400064205 --> | ||
<!-- https://brilliant.org/wiki/newton-raphson-method/ --> | ||
<!-- https://www.cnblogs.com/ywsun/p/14271547.html --> |