Skip to content

Commit

Permalink
feat: test
Browse files Browse the repository at this point in the history
  • Loading branch information
y4n9b0 committed Apr 24, 2024
1 parent 8a119d1 commit a4f1c53
Showing 1 changed file with 18 additions and 48 deletions.
66 changes: 18 additions & 48 deletions _posts/2024-04-23-Fast-inverse-square-root.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,18 @@ float Q_rsqrt( float number )
}
```
## IEEE 754
科学计数法
normalised numbers
denormalised numbers
NaN
0 & -0
由 IEEE 754 可知 float 的 long representation 为 $$(E*2^{23} + M)$$
## 牛顿迭代
牛顿迭代公式:
Expand Down Expand Up @@ -58,17 +70,14 @@ $$
\end{aligned}
$$
泰勒级数展开式:
## IEEE 754
科学计数法
normalised numbers
denormalised numbers
NaN
0 & -0
$$ f(x) = f(x_0) + f^{\prime}(x_0)(x-x_0) + \tfrac{f^{\prime\prime}(x_0)(x-x_0)^2}{2!} + ··· + \tfrac{f^{(n)}(x_0)(x-x_0)^n}{n!} + R_n(x) $$
由 IEEE 754 可知 float 的 long representation 为 $$(E*2^{23} + M)$$
牛顿迭代提高精度的几种方式:
1. 选取一个合适的初始值 $$x_0$$
2. 增加迭代次数
3. 多阶迭代
## 推导
Expand Down Expand Up @@ -109,45 +118,6 @@ $$
$$
$\log_2 10$
$$\lg_2 10$$
$$\lg 10$$
$$lg 10$$
$$\ln 10$$
$$ln 10$$
$$\log_2 10$$
$$log_2 10$$
$\sqrt{3x-1}+(1+x)^2$
$$\sqrt3$$
$$\sqrt{3}$$
$$\sqrt{3x-1}$$
$$\sqrt{3x-1}+(1+x)^2$$
$10^{10}$
$\frac{4n^3-6n^2-10n-2k^3-3k^2+8k+12kn+c}{12}$
$$\frac{4n^3-6n^2-10n-2k^3-3k^2+8k+12kn+c}{12}$$
$$\frac{4}{12}$$
$$\tfrac{4}{12}$$
$$\dfrac{4}{12}$$
$$\cfrac{4}{12}$$
## 总结
Expand Down

0 comments on commit a4f1c53

Please sign in to comment.