-
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
119 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
--- | ||
layout: post | ||
title: 快速平方根倒数 | ||
date: 2024-04-23 13:00:00 +0800 | ||
categories: algorithm | ||
tags: bit-hack | ||
published: true | ||
--- | ||
|
||
* content | ||
{:toc} | ||
|
||
## 雷神之锤3源码 | ||
|
||
```C | ||
float Q_rsqrt( float number ) | ||
{ | ||
long i; | ||
float x2, y; | ||
const float threehalfs = 1.5F; | ||
|
||
x2 = number * 0.5F; | ||
y = number; | ||
i = * ( long * ) &y; // evil floating point bit level hacking | ||
i = 0x5f3759df - ( i >> 1 ); // what the fuck? | ||
y = * ( float * ) &i; | ||
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration | ||
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed | ||
|
||
return y; | ||
} | ||
``` | ||
## 牛顿迭代 | ||
## IEEE 754 | ||
科学计数法 | ||
normalised numbers | ||
denormalised numbers | ||
NaN | ||
0 & -0 | ||
## 推导 | ||
x 为 float,令 y 为 x 的平方根倒数: | ||
$$ | ||
\begin{aligned} | ||
& \quad\,y=\frac{1}{\sqrt{x}}={x^{-s\frac{1}{2}}}\\ | ||
&\quad\,y=\frac{1}{\sqrt{x}}={x^{-s\frac{1}{2}}}\\ | ||
&\Rightarrow\log_2 (y)=-\frac{1}{2}\log_2 (x)\\ | ||
\Rightarrow\log_2 (y)=-\frac{1}{2}\log_2 (x)\\ | ||
$$ | ||
代入 x 和 y float 的 long representation | ||
$$ | ||
&\rightarrow\\ | ||
&⇒=\sum_{i=1}^{n-k}{i^2} + (2n-k+1)\sum_{i=n-k+1}^{n}{i} - \sum_{i=n-k+1}^{n}{i^2}\\ | ||
&=\sum_{i=1}^{n-k}{i^2} + (2n-k+1)(\sum_{i=1}^{n}{i}-\sum_{i=1}^{n-k}{i}) - (\sum_{i=1}^{n}{i^2}-\sum_{i=1}^{n-k}{i^2})\\ | ||
&=2\sum_{i=1}^{n-k}{i^2} - \sum_{i=1}^{n}{i^2} + (2n-k+1)(\sum_{i=1}^{n}{i}-\sum_{i=1}^{n-k}{i})\\ | ||
&=2\frac{(n-k)[(n-k)+1][2(n-k)+1]}{6} - \frac{n(n+1)(2n+1)}{6} + (2n-k+1)(\frac{n(n+1)}{2}-\frac{(n-k)(n-k+1)}{2})\\ | ||
&=\frac{2n^3+3n^2+n-k^3+k}{6} | ||
\end{aligned} | ||
$$ | ||
$\log_2 10$ | ||
$$\lg_2 10$$ | ||
$$\lg 10$$ | ||
$$lg 10$$ | ||
$$\ln 10$$ | ||
$$ln 10$$ | ||
$$\log_2 10$$ | ||
$$log_2 10$$ | ||
$\sqrt{3x-1}+(1+x)^2$ | ||
$$\sqrt3$$ | ||
$$\sqrt{3}$$ | ||
$$\sqrt{3x-1}$$ | ||
$$\sqrt{3x-1}+(1+x)^2$$ | ||
$10^{10}$ | ||
$\frac{4n^3-6n^2-10n-2k^3-3k^2+8k+12kn+c}{12}$ | ||
$$\frac{4n^3-6n^2-10n-2k^3-3k^2+8k+12kn+c}{12}$$ | ||
$$\frac{4}{12}$$ | ||
$$\tfrac{4}{12}$$ | ||
$$\dfrac{4}{12}$$ | ||
$$\cfrac{4}{12}$$ | ||
## 总结 | ||
现在已经有了平方根运算器,已经不需要这么写了。 | ||
<!-- https://www.youtube.com/watch?v=p8u_k2LIZyo --> | ||
<!-- https://www.zhihu.com/question/26287650 --> | ||
<!-- https://en.wikipedia.org/wiki/Fast_inverse_square_root --> | ||
<!-- https://zh.wikipedia.org/wiki/%E5%B9%B3%E6%96%B9%E6%A0%B9%E5%80%92%E6%95%B0%E9%80%9F%E7%AE%97%E6%B3%95 --> | ||
<!-- https://zhuanlan.zhihu.com/p/400064205 --> | ||
<!-- https://brilliant.org/wiki/newton-raphson-method/ --> |