Skip to content

Commit

Permalink
feat: fast inverse square root
Browse files Browse the repository at this point in the history
  • Loading branch information
y4n9b0 committed Apr 23, 2024
1 parent a2b66e7 commit 7925c41
Showing 1 changed file with 119 additions and 0 deletions.
119 changes: 119 additions & 0 deletions _posts/2024-04-23-Fast-inverse-square-root.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
---
layout: post
title: 快速平方根倒数
date: 2024-04-23 13:00:00 +0800
categories: algorithm
tags: bit-hack
published: true
---

* content
{:toc}

## 雷神之锤3源码

```C
float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F;

x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> 1 ); // what the fuck?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed

return y;
}
```
## 牛顿迭代
## IEEE 754
科学计数法
normalised numbers
denormalised numbers
NaN
0 & -0
## 推导
x 为 float,令 y 为 x 的平方根倒数:
$$
\begin{aligned}
& \quad\,y=\frac{1}{\sqrt{x}}={x^{-s\frac{1}{2}}}\\
&\quad\,y=\frac{1}{\sqrt{x}}={x^{-s\frac{1}{2}}}\\
&\Rightarrow\log_2 (y)=-\frac{1}{2}\log_2 (x)\\
\Rightarrow\log_2 (y)=-\frac{1}{2}\log_2 (x)\\
$$
代入 x 和 y float 的 long representation
$$
&\rightarrow\\
&⇒=\sum_{i=1}^{n-k}{i^2} + (2n-k+1)\sum_{i=n-k+1}^{n}{i} - \sum_{i=n-k+1}^{n}{i^2}\\
&=\sum_{i=1}^{n-k}{i^2} + (2n-k+1)(\sum_{i=1}^{n}{i}-\sum_{i=1}^{n-k}{i}) - (\sum_{i=1}^{n}{i^2}-\sum_{i=1}^{n-k}{i^2})\\
&=2\sum_{i=1}^{n-k}{i^2} - \sum_{i=1}^{n}{i^2} + (2n-k+1)(\sum_{i=1}^{n}{i}-\sum_{i=1}^{n-k}{i})\\
&=2\frac{(n-k)[(n-k)+1][2(n-k)+1]}{6} - \frac{n(n+1)(2n+1)}{6} + (2n-k+1)(\frac{n(n+1)}{2}-\frac{(n-k)(n-k+1)}{2})\\
&=\frac{2n^3+3n^2+n-k^3+k}{6}
\end{aligned}
$$
$\log_2 10$
$$\lg_2 10$$
$$\lg 10$$
$$lg 10$$
$$\ln 10$$
$$ln 10$$
$$\log_2 10$$
$$log_2 10$$
$\sqrt{3x-1}+(1+x)^2$
$$\sqrt3$$
$$\sqrt{3}$$
$$\sqrt{3x-1}$$
$$\sqrt{3x-1}+(1+x)^2$$
$10^{10}$
$\frac{4n^3-6n^2-10n-2k^3-3k^2+8k+12kn+c}{12}$
$$\frac{4n^3-6n^2-10n-2k^3-3k^2+8k+12kn+c}{12}$$
$$\frac{4}{12}$$
$$\tfrac{4}{12}$$
$$\dfrac{4}{12}$$
$$\cfrac{4}{12}$$
## 总结
现在已经有了平方根运算器,已经不需要这么写了。
<!-- https://www.youtube.com/watch?v=p8u_k2LIZyo -->
<!-- https://www.zhihu.com/question/26287650 -->
<!-- https://en.wikipedia.org/wiki/Fast_inverse_square_root -->
<!-- https://zh.wikipedia.org/wiki/%E5%B9%B3%E6%96%B9%E6%A0%B9%E5%80%92%E6%95%B0%E9%80%9F%E7%AE%97%E6%B3%95 -->
<!-- https://zhuanlan.zhihu.com/p/400064205 -->
<!-- https://brilliant.org/wiki/newton-raphson-method/ -->

0 comments on commit 7925c41

Please sign in to comment.