Skip to content

[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

License

Notifications You must be signed in to change notification settings

xyupeng/ContrastiveCrop

Repository files navigation

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral)

2022-03-29: The paper was selected as a CVPR 2022 Oral paper!

2022-03-03: The paper was accepted by CVPR 2022!

This is the official PyTorch implementation of the ContrastiveCrop paper:

@article{peng2022crafting,
  title={Crafting Better Contrastive Views for Siamese Representation Learning},
  author={Peng, Xiangyu and Wang, Kai and Zhu, Zheng and You, Yang},
  journal={arXiv preprint arXiv:2202.03278},
  year={2022}
}

This repo includes PyTorch implementation of SimCLR, MoCo, BYOL and SimSiam, as well as their DDP training code.

Preparation

  1. Create a python enviroment with pytorch >= 1.8.1.
  2. pip install -r requirements.txt

Datasets

Please download and organize the datasets in this structure:

ContrastiveCrop
├── data/
    ├── ImageNet/
    │   ├── train/ 
    │   ├── val/
    ├── cifar-10-batches-py/
    ├── cifar-100-python/
    ├── stl10_binary/
    ├── tiny-imagenet-200/
    │   ├── train/
    │   ├── val/

Use this script to prepare tiny-imagenet-200.

Pre-train

# MoCo, CIFAR-10, CCrop
python DDP_moco_ccrop.py configs/small/cifar10/moco_ccrop.py

# SimSiam, CIFAR-100, CCrop
python DDP_simsiam_ccrop.py configs/small/cifar100/simsiam_ccrop.py

# MoCo V2, IN-200, CCrop
python DDP_moco_ccrop.py configs/IN200/mocov2_ccrop.py

# MoCo V2, IN-1K, CCrop
python DDP_moco_ccrop.py configs/IN1K/mocov2_ccrop.py

We also recommend trying an even simpler version of ContrastiveCrop, named SimCCrop, that simply fixes a box at the center of the image with half height & width of that image. SimCCrop even does not require localization and thus adds NO extra training overhead. It should work well on almost 'object-centric' datasets.

# MoCo, SimCCrop
python DDP_moco_ccrop.py configs/small/cifar10/moco_simccrop.py
python DDP_moco_ccrop.py configs/small/cifar100/moco_simccrop.py

Linear Evaluation

# CIFAR-10
python DDP_linear.py configs/linear/cifar10_res18.py --load ./checkpoints/small/cifar10/moco_ccrop/last.pth

# CIFAR-100
python DDP_linear.py configs/linear/cifar100_res18.py --load ./checkpoints/small/cifar100/simsiam_ccrop/last.pth

# IN-200 
python DDP_linear.py configs/linear/IN200_res50.py --load ./checkpoints/IN200/mocov2_ccrop/last.pth

# IN-1K
python DDP_linear.py configs/linear/IN1K_res50.py --load ./checkpoints/IN1K/mocov2_ccrop/last.pth

More models and datasets coming soon.

About

[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages