A marvelous toolbox for DL/DL-based communication research!
- Complex value matrix computition APIs;
- Convenient base trainer and base experment settings;
- Providing commonly used neural network structures (MLP, CNNs, DCGAN).
- Adversarial attacks (CW, adaptive CW, PGD and adaptive PGD)
- Signal processing tools.
- Clone the git repository
$ git clone https://github.com/xrj-com/marvaltoolbox.git
- Navigate to the top level marveltoolbox directory
- Install marveltoolbox
$ pip install .
import marveltoolbox as mt
- Setting your experiment configs base on mt.BaseConfs:
class Confs(mt.BaseConfs):
def __init__(self):
super().__init__()
def get_dataset(self):
self.dataset = 'mnist'
self.nc = 1
self.nz = 10
def get_flag(self):
self.flag = 'demo-{}-clf'.format(self.dataset)
def get_device(self):
self.device_ids = [0]
self.ngpu = len(self.device_ids)
self.device = torch.device(
"cuda:{}".format(self.device_ids[0]) if \
(torch.cuda.is_available() and self.ngpu > 0) else "cpu")
- Defining your Trainer base on mt.BaseTrainer. Using predefined dicts: models, optims, schedulers eta. to preserve your neural networks and optimization settings:
class Trainer(mt.BaseTrainer, Confs):
def __init__(self, confs):
Confs.__init__(self)
mt.BaseTrainer.__init__(self, self)
self.models['C'] = mt.nn.dcgan.Enet32(confs.nc, confs.nz).to(self.device)
self.optims['C'] = torch.optim.Adam(
self.models['C'].parameters(), lr=1e-4, betas=(0.5, 0.99))
self.train_loader, self.val_loader, self.test_loader, _ = \
mt.datasets.load_data(confs.dataset, 1.0, 0.8, self.batch_size, 32, None, False)
- Predefined methods: train, eval, main need to be implemented according to your own needs. For example, if we want to train a classifier, the Trainer can be defined as follow:
class Trainer(mt.BaseTrainer):
def train(self, epoch):
self.models['C'].train()
for i, (x, y) in enumerate(self.train_loader):
x, y = x.to(self.device), y.to(self.device)
scores = self.models['C'](x)
loss = F.cross_entropy(scores, y)
self.optims['C'].zero_grad()
loss.backward()
self.optims['C'].step()
if i % 100 == 0:.
self.logs['Train Loss'] = loss.item()
self.print_logs(epoch, i)
return loss.item()
def eval(self, epoch):
self.models['C'].eval()
correct = 0.0
with torch.no_grad():
for x, y in self.val_loader:
x, y = x.to(self.device), y.to(self.device)
N = len(x)
scores = self.models['C'](x)
pred_y = torch.argmax(scores, dim=1)
correct += torch.sum(pred_y == y).item()
N = len(self.val_loader.dataset)
acc = correct / N
is_best = False
if acc >= self.records['acc']:
is_best = True
self.records['acc'] = acc
print('acc: {}'.format(acc))
return is_best
- Training model via:
my_trainer = Trainer()
my_trainer.run(load_best=True, retrain=False)
- The model and the optimizer will automatically be saved as 'checkpoint_[your flag].pth.tar' each epoch.
Full code can be found in 'demos/clf.py' .
If you found this code useful plase cite our work
@Electronic{
Xie2019a,
author = {Xie, Renjie and Xu, Wei},
title = {{MarvelToolbox}},
url = {https://github.com/xrj-com/marveltoolbox},
year = {2020}
}