Skip to content

xmed-lab/AATS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Leveraging Anatomical Consistency for Multi-Object Detection in Ultrasound Images via Source-free Unsupervised Domain Adaptation

PostScript

This project is the pytorch implemention of AATS;

Our experimental platform is configured with One RTX3090 (cuda>=11.0);

Currently, this code is avaliable for public dataset CardiacUDA and FUSH;

Installation

Prerequisites

  • Python ≥ 3.6
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation.
  • Detectron2 == 0.5

Install python env

To install required dependencies on the virtual environment of the python (e.g., virtualenv for python3), please run the following command at the root of this code:

$ python3 -m venv /path/to/new/virtual/environment/.
$ source /path/to/new/virtual/environment/bin/activate

For example:

$ mkdir python_env
$ python3 -m venv python_env/
$ source python_env/bin/activate

Build Detectron2 from Source

Follow the INSTALL.md to install Detectron2.

Dataset download

  1. Download the datasets

  2. Organize the dataset as the COCO annotation format.

Training

  • Train the AATS under Center 1 of Heart (source) and Center 2 of Heart (target) on FUSH dataset
python train_net.py \
      --num-gpus 1 \
      --config configs/sfda_at_rcnn_vgg_fetus_4c_1to2.yaml\
      OUTPUT_DIR output/AATS_4c_1to2
  • Train the AATS under Center 2 of Heart (source) and Center 1 of Heart (target) on FUSH dataset
python train_net.py\
      --num-gpus 1\
      --config configs/sfda_at_rcnn_vgg_fetus_4c_2to1.yaml\
      OUTPUT_DIR output/AATS_4c_2to1

Resume the training

python train_net.py \
      --resume \
      --num-gpus 1 \
      --config configs/sfda_at_rcnn_vgg_fetus_4c_1to2.yaml MODEL.WEIGHTS <your weight>.pth

Evaluation

python train_net.py \
      --eval-only \
      --num-gpus 1 \
      --config configs/sfda_test.yaml \
      MODEL.WEIGHTS <your weight>.pth

Results and Model Weights

We will publish the VGG pre-training weights and model weights soon.

Code Reference

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages