This repository is the PyTorch implementation for the network presented in:
Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, Yichen Wei, Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach ICCV 2017 (arXiv:1704.02447)
Note: This repository has been updated and is different from the method discribed in the paper. To fully reproduce the results in the paper, please checkout the original torch implementation or our pytorch re-implementation branch (slightly worse than torch). We also provide a clean 2D hourglass network branch.
The updates include:
- Change network backbone to ResNet50 with deconvolution layers (Xiao et al. ECCV2018). Training is now about 3x faster than the original hourglass net backbone (but no significant performance improvement).
- Change the depth regression sub-network to a one-layer depth map (described in our StarMap project).
- Change the Human3.6M dataset to official release in ECCV18 challenge.
- Update from python 2.7 and pytorch 0.1.12 to python 3.6 and pytorch 0.4.1.
Contact: [email protected]
The code was tested with Anaconda Python 3.6 and PyTorch v0.4.1. After install Anaconda and Pytorch:
-
Clone the repo:
POSE_ROOT=/path/to/clone/pytorch-pose-hg-3d git clone https://github.com/xingyizhou/pytorch-pose-hg-3d POSE_ROOT
-
Install dependencies (opencv, and progressbar):
conda install --channel https://conda.anaconda.org/menpo opencv conda install --channel https://conda.anaconda.org/auto progress
-
Disable cudnn for batch_norm (see issue):
# PYTORCH=/path/to/pytorch # for pytorch v0.4.0 sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py # for pytorch v0.4.1 sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
-
Optionally, install tensorboard for visializing training.
pip install tensorflow
- Download our pre-trained model and move it to
models
. - Run
python demo.py --demo /path/to/image/or/image/folder [--gpus -1] [--load_model /path/to/model]
.
--gpus -1
is for CPU mode.
We provide example images in images/
. For testing your own image, it is important that the person should be at the center of the image and most of the body parts should be within the image.
To test our model on Human3.6 dataset run
python main.py --exp_id test --task human3d --dataset fusion_3d --load_model ../models/fusion_3d_var.pth --test --full_test
The expected results should be 64.55mm.
-
Prepare the training data:
- Download images from MPII dataset and their annotation in json format (
train.json
andval.json
) (from Xiao et al. ECCV2018). - Download Human3.6M ECCV challenge dataset.
- Download meta data (2D bounding box) of the Human3.6 dataset (from Sun et al. ECCV 2018).
- Place the data (or create symlinks) to make the data folder like:
${POSE_ROOT} |-- data `-- |-- mpii `-- |-- annot | |-- train.json | |-- valid.json `-- images |-- 000001163.jpg |-- 000003072.jpg `-- |-- h36m `-- |-- ECCV18_Challenge | |-- Train | |-- Val `-- msra_cache `-- |-- HM36_eccv_challenge_Train_cache | |-- HM36_eccv_challenge_Train_w288xh384_keypoint_jnt_bbox_db.pkl `-- HM36_eccv_challenge_Val_cache |-- HM36_eccv_challenge_Val_w288xh384_keypoint_jnt_bbox_db.pkl
- Download images from MPII dataset and their annotation in json format (
python main.py --exp_id mpii
python main.py --exp_id fusion_3d --task human3d --dataset fusion_3d --ratio_3d 1 --weight_3d 0.1 --load_model ../exp/mpii/model_last.pth --num_epoch 60 --lr_step 45
python main.py --exp_id fusion_3d_var --task human3d --dataset fusion_3d --ratio_3d 1 --weight_3d 0.1 --weight_var 0.01 --load_model ../models/fusion_3d.pth --num_epoch 10 --lr 1e-4
@InProceedings{Zhou_2017_ICCV,
author = {Zhou, Xingyi and Huang, Qixing and Sun, Xiao and Xue, Xiangyang and Wei, Yichen},
title = {Towards 3D Human Pose Estimation in the Wild: A Weakly-Supervised Approach},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}