Skip to content

[RA-L] DreamCar: Leveraging Car-specific Prior for in-the-wild 3D Car Reconstruction

License

Notifications You must be signed in to change notification settings

xiaobiaodu/DreamCar

Repository files navigation

If you like our project, please give us a star ⭐ on GitHub for latest update.

webpage arXiv License: MIT

😮 Highlights

DreamCar can reconstruct a completed 3D car model in the moving-forward scene given a few images even a single image.

🔥 Symmetry Learning, Car-specific Piror, Pose Optimization

  • Symmetry Learning: We use the symmetric nature of cars to reconstruct a completed 3D car.
  • Car generative prior: We contribute a 3D car dataset to empower Zero123 with car-specific piror.
  • Pose optimization: We propose a pose optimization method to optimize the poses with error from self-driving datasets.

🚩 Updates

Welcome to watch 👀 this repository for the latest updates.

[2024.7.23] : Release project page.

[2024.7.23] : Code Release.

Installation

Install threestudio

This part is the same as original threestudio. Skip it if you already have installed the environment.

See installation.md for additional information, including installation via Docker.

  • You must have an NVIDIA graphics card with at least 20GB VRAM and have CUDA installed.
  • Install Python >= 3.8.
  • (Optional, Recommended) Create a virtual environment:
python3 -m virtualenv venv
. venv/bin/activate

# Newer pip versions, e.g. pip-23.x, can be much faster than old versions, e.g. pip-20.x.
# For instance, it caches the wheels of git packages to avoid unnecessarily rebuilding them later.
python3 -m pip install --upgrade pip
  • Install PyTorch >= 1.12. We have tested on torch1.12.1+cu113 and torch2.0.0+cu118, but other versions should also work fine.
# torch1.12.1+cu113
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
# or torch2.0.0+cu118
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118
  • (Optional, Recommended) Install ninja to speed up the compilation of CUDA extensions:
pip install ninja
  • Install dependencies:
pip install -r requirements.txt

Download pre-trained models

  • Dreamcar123. We use our dreamcar123.ckpt to provide car-specific piror. You can download it here into load/zero123/.
  • Omnidata. We use Omnidata for depth and normal predition in preprocess_image.py (copyed from stable-dreamfusion).
cd load/omnidata
gdown '1Jrh-bRnJEjyMCS7f-WsaFlccfPjJPPHI&confirm=t' # omnidata_dpt_depth_v2.ckpt
gdown '1wNxVO4vVbDEMEpnAi_jwQObf2MFodcBR&confirm=t' # omnidata_dpt_normal_v2.ckpt

Quickstart

  • Memory Usage. We run the default configs on 80G A100 GPUs.
  • We provide the instruction below for the training in a 24G GPU, You can improve the rendering resolution of NeRF and NeuS by data.height=128 data.width=128 data.random_camera.height=128 data.random_camera.width=128 and the rendering resolution of Texutering stage by data.height=1024 data.width=1024 data.random_camera.height=1024 data.random_camera.width=1024to get better results.
export image_path="example_data/94b33ce331b844dcb991a2020742cebf"
id=$(basename "$image_path")
export CUDA_VISIBLE_DEVICES=0
python preprocess_image.py  "$image_path"

## stage 1 NeRF
python launch.py   --train   \
   --config configs/dreamcar-coarse-nerf-nuscenes.yaml data.image_path="$image_path"      \
      data.random_camera.height=64 data.random_camera.width=64   data.height=64  data.width=64  \
   system.guidance_3d.pretrained_model_name_or_path="load/zero123/dreamcar123.ckpt"   


## stage 1 Neus
ckpt=outputs/dreamcar-coarse-nerf/"$id"/ckpts/last.ckpt
python launch.py  --train  \
    --config configs/dreamcar-coarse-neus-nuscenes.yaml  \
    system.weights="$ckpt" data.image_path="$image_path"   \
      data.random_camera.height=64 data.random_camera.width=64   data.height=64  data.width=64  \
      system.guidance_3d.pretrained_model_name_or_path="load/zero123/dreamcar123.ckpt"


## stage 2 Geo
ckpt=outputs/dreamcar-coarse-neus/"$id"/ckpts/last.ckpt
python launch.py  --train  \
  --config configs/dreamcar-geometry-nuscenes.yaml \
  system.geometry_convert_from="$ckpt"  data.image_path="$image_path"  \
    system.guidance_3d.pretrained_model_name_or_path="load/zero123/dreamcar123.ckpt"


## stage 3 Tex
ckpt=outputs/dreamcar-geometry/"$id"/ckpts/last.ckpt
python launch.py --train  --config configs/dreamcar-texture-nuscenes.yaml \
      data.image_path="$image_path" system.geometry_convert_from="$ckpt" \
            data.random_camera.height=128 data.random_camera.width=128   data.height=128  data.width=128  \
        system.guidance_3d.pretrained_model_name_or_path="load/zero123/dreamcar123.ckpt"
 
 

👍 Acknowledgement

This work is built on many amazing research works and open-source projects, thanks a lot to all the authors for sharing!

✏️ Citation

If you find our paper and code useful in your research, please consider giving a star ⭐ and citation 📝.

@misc{du2024dreamcarleveragingcarspecificprior,
      title={DreamCar: Leveraging Car-specific Prior for in-the-wild 3D Car Reconstruction}, 
      author={Xiaobiao Du and Haiyang Sun and Ming Lu and Tianqing Zhu and Xin Yu},
      year={2024},
      eprint={2407.16988},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2407.16988}, 
}

About

[RA-L] DreamCar: Leveraging Car-specific Prior for in-the-wild 3D Car Reconstruction

Topics

Resources

License

Stars

Watchers

Forks

Languages