Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

neurips #185

Merged
merged 1 commit into from
Jan 2, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 32 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,39 @@
## Papers

### 2024
- <a name="todo"></a> GACL: Exemplar-Free Generalized Analytic Continual Learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/7d7f8049c3a8d96f5824e696ca7a41551b337c51.pdf)][[code](https://github.com/CHEN-YIZHU/GACL)]
- <a name="todo"></a> Continual Audio-Visual Sound Separation (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/fd25d9e8abc814ee3c5d1d374c127ffdda6c023a.pdf)][[code](https://github.com/weiguoPian/ContAV-Sep_NeurIPS2024)]
- <a name="todo"></a> F-OAL: Forward-only Online Analytic Learning with Fast Training and Low Memory Footprint in Class Incremental Learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/e226708f2029c076b49ce0f8780b0b25c1a15cb8.pdf)][[code](https://github.com/liuyuchen-cz/F-OAL)]
- <a name="todo"></a> Adaptive Visual Scene Understanding: Incremental Scene Graph Generation (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/8e577312ef669ee933f93b7513fcff4d94b2b848.pdf)][[code](https://github.com/ZhangLab-DeepNeuroCogLab/CSEGG)]
- <a name="todo"></a> Task Confusion and Catastrophic Forgetting in Class-Incremental Learning: A Mathematical Framework for Discriminative and Generative Modelings (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/57bd4f3d82cf6a55dece2ea557e36fce58d61778.pdf)]
- <a name="todo"></a> Forgetting, Ignorance or Myopia: Revisiting Key Challenges in Online Continual Learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/f234665a6b29bf4968da01a5adc0303e595efb5c.pdf)][[code](https://github.com/wxr99/Forgetting-Ignorance-or-Myopia-Revisiting-Key-Challenges-in-Online-Continual-Learning)]
- <a name="todo"></a> Continual Learning in the Frequency Domain (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/b2bc1d3b1cda2ea1944e24b02553a19d2c513437.pdf)][[code](https://github.com/EMLS-ICTCAS/CLFD.git)]
- <a name="todo"></a> Saliency-driven Experience Replay for Continual Learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/f3e3bc516755d6efa43fb0c62dea0d705efacfe7.pdf)][[code](https://github.com/perceivelab/SER)]
- <a name="todo"></a> PCoTTA: Continual Test-Time Adaptation for Multi-Task Point Cloud Understanding (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/10d19bfe9a28e15074dbb79450ad0e5bc9dde6e4.pdf)][[code](https://github.com/Jinec98/PCoTTA)]
- <a name="todo"></a> Advancing Cross-domain Discriminability in Continual Learning of Vision-Language Models (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/f13992ea7e554b8fcfa2b120be55eeb89c25643f.pdf)][[code](https://github.com/linghan1997/Regression-based-Analytic-Incremental-Learning)]
- <a name="todo"></a> Continual Learning with Global Alignment (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/0b2a82c75f549856c3b133f08c9abe7349c018d7.pdf)]
- <a name="todo"></a> Disentangling and mitigating the impact of task similarity for continual learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/a615623ba5e9b57a77694d9816984ebb20ebf11f.pdf)]
- <a name="todo"></a> Replay-and-Forget-Free Graph Class-Incremental Learning: A Task Profiling and Prompting Approach (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/db512259110b000f82fd2052e9432dd693af4137.pdf)][[code](https://github.com/mala-lab/TPP)]
- <a name="todo"></a> Make Continual Learning Stronger via C-Flat (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/be179393fb5b55da27facef791300b7cea7f22b0.pdf)][[code](https://github.com/WanNaa/C-Flat)]
- <a name="todo"></a> ViLCo-Bench: VIdeo Language COntinual learning Benchmark (**NeurIPS 2024**) [[paper](https://arxiv.org/pdf/2406.13123)][[code](https://github.com/cruiseresearchgroup/ViLCo)]
- <a name="todo"></a> Not Just Object, But State: Compositional Incremental Learning without Forgetting (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/e422a66571f0dfafe75b5c8ba1f75cb365fda448.pdf)][[code](https://github.com/Yanyi-Zhang/CompILer)]
- <a name="todo"></a> Task-recency bias strikes back: Adapting covariances in Exemplar-Free Class Incremental Learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/3b3eb9b8951efe8f03c3881dd21dd13da86a9383.pdf)][[code](https://github.com/grypesc/AdaGauss)]
- <a name="todo"></a> Random Representations Outperform Online Continually Learned Representations (**NeurIPS 2024**) [[paper](https://arxiv.org/abs/2402.08823)][[code](https://github.com/drimpossible/RanDumb)]
- <a name="todo"></a> Mixture of Experts Meets Prompt-Based Continual Learning (**NeurIPS 2024**) [[paper](https://arxiv.org/abs/2405.14124)][[code](https://github.com/Minhchuyentoancbn/MoE_PromptCL)]
- <a name="todo"></a> SAFE: Slow and Fast Parameter-Efficient Tuning for Continual Learning with Pre-Trained Models (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/0d0cbd6d4b593d16bd3e4fb3e1b7c2e737e4a5c5.pdf)][[code](https://github.com/MIFA-Lab/SAFE)]
- <a name="todo"></a> Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/2d2fc4beb4ba2418dd2a4c680959b5708e85b13e.pdf)][[code](https://github.com/ybseo-ac/TAALM)]
- <a name="todo"></a> Persistence Homology Distillation for Semi-supervised Continual Learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/5f6f27efbe92894d0e9f59692d4fee8538becfa1.pdf)][[code](https://github.com/fanyan0411/PsHD)]
- <a name="todo"></a> Continual learning with the neural tangent ensemble (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/7ca99de5c6a3ad1c6a158db1bba6a3eb0841e7bc.pdf)]
- <a name="todo"></a> Vector Quantization Prompting for Continual Learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/fe56049dfd050804f643de97820660c0ab7ace62.pdf)][[code](https://github.com/jiaolifengmi/VQ-Prompt)]
- <a name="todo"></a> CLAP4CLIP: Continual Learning with Probabilistic Finetuning for Vision-Language Models (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/649fc2bc1d6ab7ff1bb07d921e2180c36c2ccf3b.pdf)][[code](https://github.com/srvCodes/clap4clip)]
- <a name="todo"></a> An Efficient Memory Module for Graph Few-Shot Class-Incremental Learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/31dab3747597e8e344a3f1a522e12afb94978737.pdf)][[code](https://github.com/Arvin0313/Mecoin-GFSCIL.git)]
- <a name="todo"></a> Label Delay in Online Continual Learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/170ed172ba6d096fafba4f36e54f20fec4c17dcf.pdf)][[code](https://github.com/botcs/label-delay-exp)]
- <a name="todo"></a> Visual Prompt Tuning in Null Space for Continual Learning (**NeurIPS 2024**) [[paper](https://arxiv.org/abs/2406.05658)][[code](https://github.com/zugexiaodui/VPTinNSforCL)]
- <a name="todo"></a> Incremental Learning of Retrievable Skills For Efficient Continual Task Adaptation (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/4f1691d6d916f1f457cca7c2a9184a4911758a80.pdf)]
- <a name="todo"></a> A Topology-aware Graph Coarsening Framework for Continual Graph Learning (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/406408d7839e9d5c643715d8429ea93609e08c84.pdf)][[code](https://github.com/hanxiaoxue114/TACO)]
- <a name="todo"></a> What Matters in Graph Class Incremental Learning? An Information Preservation Perspective (**NeurIPS 2024**) [[paper](https://openreview.net/pdf/f16531b97e4d2d6593f7273b8e6bb7292070ff71.pdf)][[code](https://github.com/Jillian555/GSIP)]
- <a name="todo"></a> Happy: A Debiased Learning Framework for Continual Generalized Category Discovery (**NeurIPS 2024**) [[paper](https://arxiv.org/abs/2410.06535)][[code](https://github.com/mashijie1028/Happy-CGCD)]

- <a name="todo"></a> Early Preparation Pays Off: New Classifier Pre-tuning for Class Incremental Semantic Segmentation (**ECCV24**)[[paper](https://arxiv.org/abs/2407.14142)][[code](https://github.com/zhengyuan-xie/ECCV24_NeST)]
- <a name="todo"></a> Class-Incremental Learning with CLIP: Adaptive Representation Adjustment and Parameter Fusion (**ECCV24**)[[paper](https://arxiv.org/abs/2407.14143)][[code](https://github.com/linlany/RAPF)]
- <a name="todo"></a> Bridge Past and Future: Overcoming Information Asymmetry in Incremental Object Detection (**ECCV24**)[[paper](https://arxiv.org/abs/2407.11499)][[code](https://github.com/iSEE-Laboratory/BPF)]
Expand Down