Skip to content

Commit

Permalink
Add encapsulation dag functionality (#444)
Browse files Browse the repository at this point in the history
* Added weights option to to_line_graph function.

* Added tests for weighted line graph implementation.

* Added s=2 test.

* Added encapsulation dag code.

* Added encapsulation dag tests.

* Removed unnecessary combinations import.

* Updated docstring.

* included functions from publication (#400)

* feat: added shuffle_hyperedges + tests

* feat: added shuffle_hyperedges + tests

* fix: filenames

* fix: tests

* style: black and isort

* feat: added function node_swap + test

* style: black and isort

* fix: error from python 3.11

* attempt at listing the available statistics (#405)

* attempt at listing the available statistics

* fixing previous errors

* Attempt at implementing suggestions by nich

* second attempt at displaying the titles

* another trial

* titles in bold

* update of the panel for dihypergraph stats

* minor fixes

* change the hierarchical structure

* minor change

* moving MultiDi-stats in the right place

* adding decorators to the admonition box

* moving up the decorators

* up-version

* feat: enforce equal aspect for circular layout #430 (#432)

* feat: enforce equal aspect for circular layout #430

* changed implementation of set_aspect

* Refactor draw module (#435)

* refact: draw module

* style: black and isort

* fix #331 (#438)

* Added the ability for users to access the optional arguments of NetworkX layout functions. (#439)

* Added another test.

* Refactored relations to subset_types. Exposed and documented empirical relations filtering function. Documentation improvements.

* Update xgi/convert/encapsulation_dag.py documentation

Co-authored-by: Maxime Lucas <[email protected]>

* Fix typo in xgi/convert/encapsulation_dag.py

Co-authored-by: Maxime Lucas <[email protected]>

* Updates to documentation.

* Minor refactor.

---------

Co-authored-by: Maxime Lucas <[email protected]>
Co-authored-by: Thomas Robiglio <[email protected]>
Co-authored-by: Nicholas Landry <[email protected]>
  • Loading branch information
4 people authored Aug 4, 2023
1 parent 52e6aac commit 7f93d0e
Show file tree
Hide file tree
Showing 3 changed files with 287 additions and 0 deletions.
77 changes: 77 additions & 0 deletions tests/convert/test_encapsulation_dag.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
from networkx import DiGraph

import xgi


def test_to_encapsulation_dag(edgelist1, edgelist8, hypergraph1, hypergraph2):

H = xgi.Hypergraph(edgelist1)
for subset_types in ["all", "immediate", "empirical"]:
L = xgi.to_encapsulation_dag(H, subset_types=subset_types)
assert isinstance(L, DiGraph)
assert set(L.nodes) == set(list(range(4)))
assert len(L.edges) == 0

H = xgi.Hypergraph(edgelist8)
L = xgi.to_encapsulation_dag(H, subset_types="immediate")
assert isinstance(L, DiGraph)
assert set(L.nodes) == set(list(range(9)))
assert len(L.edges) == 1
assert len(L[3]) == 0
assert len(list(L.predecessors(0))) == 1
assert len(list(L.successors(1))) == 1


L = xgi.to_encapsulation_dag(H, subset_types="empirical")
assert isinstance(L, DiGraph)
assert set(L.nodes) == set(list(range(9)))
assert len(L.edges) == 4
assert len(L[3]) == 3
assert len(list(L.predecessors(0))) == 1
assert len(list(L.successors(1))) == 1

H = xgi.Hypergraph(edgelist8)
L = xgi.to_encapsulation_dag(H)

assert isinstance(L, DiGraph)
assert set(L.nodes) == set(list(range(9)))
assert len(L.edges) == 5
assert len(L[3]) == 4
assert len(list(L.predecessors(0))) == 2

L = xgi.to_encapsulation_dag(H, subset_types="immediate")
assert isinstance(L, DiGraph)
assert set(L.nodes) == set(list(range(9)))
assert len(L.edges) == 1
assert len(L[3]) == 0
assert len(list(L.predecessors(0))) == 1
assert len(list(L.successors(1))) == 1


L = xgi.to_encapsulation_dag(H, subset_types="empirical")
assert isinstance(L, DiGraph)
assert set(L.nodes) == set(list(range(9)))
assert len(L.edges) == 4
assert len(L[3]) == 3
assert len(list(L.predecessors(0))) == 1
assert len(list(L.successors(1))) == 1

L = xgi.to_encapsulation_dag(hypergraph1)
assert set(L.nodes) == {"e1", "e2", "e3"}
assert [e for e in L.edges] == [("e2", "e1"), ("e2", "e3")]

L = xgi.to_encapsulation_dag(hypergraph2)
assert set(L.nodes) == {"e1", "e2", "e3"}
assert [e for e in L.edges] == [("e3", "e1"), ("e3", "e2")]

H = xgi.Hypergraph()
L = xgi.to_encapsulation_dag(H)

assert L.number_of_nodes() == 0
assert L.number_of_edges() == 0

H.add_nodes_from([0, 1, 2])
L = xgi.to_encapsulation_dag(H)

assert L.number_of_nodes() == 0
assert L.number_of_edges() == 0
2 changes: 2 additions & 0 deletions xgi/convert/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
hypergraph_dict,
incidence,
line_graph,
encapsulation_dag,
pandas,
simplex,
)
Expand All @@ -18,5 +19,6 @@
from .hypergraph_dict import *
from .incidence import *
from .line_graph import *
from .encapsulation_dag import *
from .pandas import *
from .simplex import *
208 changes: 208 additions & 0 deletions xgi/convert/encapsulation_dag.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
from ..exception import XGIError

import networkx as nx

__all__ = ["to_encapsulation_dag", "empirical_subsets_filter"]

def to_encapsulation_dag(H, subset_types="all"):
"""The encapsulation DAG (Directed Acyclic Graph) of
the hypergraph H.
An encapsulation DAG is a directed line graph
where the nodes are hyperedges in H and a directed edge
exists from a larger hyperedge to a smaller hyperedge if
the smaller is a subset of the larger.
Parameters
----------
H : Hypergraph
The hypergraph of interest
subset_types : str, optional
Type of relations to include. Options are:
"all" : all subset relationships
"immediate" : only subset relationships between hyperedges of
adjacent sizes (i.e., edges from k to k-1)
"empirical" : A relaxation of the "immediate" option where only
subset relationships between hyperedges of size k and subsets
of maximum size k'<k existing in the hypergraph are included.
For example, a hyperedge of size 5 may have no immediate
encapsulation relationships with hyperedges of size 4, but may
encapsulate hyperedegs of size 3, which will be included if
using this setting (whereas relationships with subsets of size 2
would not be included).
Returns
-------
LG : networkx.DiGraph
The line graph associated to the Hypergraph
Examples
--------
>>> import xgi
>>> from xgi.convert import to_encapsulation_dag, empirical_subsets_filter
>>> H = xgi.Hypergraph([["a","b","c"], ["b","c","f"], ["a","b"], ["c", "e"], ["a"], ["f"]])
>>> dag = to_encapsulation_dag(H)
>>> dag.edges()
OutEdgeView([(0, 2), (0, 4), (2, 4), (1, 5)])
>>> dag = to_encapsulation_dag(H, subset_types="immediate")
>>> dag.edges()
OutEdgeView([(0, 2), (2, 4)])
>>> dag = to_encapsulation_dag(H, subset_types="empirical")
>>> dag.edges()
OutEdgeView([(0, 2), (2, 4), (1, 5)])
References
----------
"Encapsulation Structure and Dynamics in Hypergraphs", by Timothy LaRock
& Renaud Lambiotte. https://arxiv.org/abs/2307.04613
"""
if not (subset_types in ["all", "immediate", "empirical"]):
raise XGIError(f"{subset_types} not a valid subset_types option. Choices are "
"'all', 'immediate', and 'empirical'.")

# Construct the dag
dag = nx.DiGraph()
# Loop over hyperedges
for he_idx in H.edges:
# Add the hyperedge as a node
dag.add_node(he_idx)
# Get the hyperedge as a set
he = H.edges.members(he_idx)
# Get candidate encapsulation hyperedges
candidates = _get_candidates(subset_types, H, he)
# for each candidate
candidates_checked = set()
for cand_idx in candidates:
if cand_idx in candidates_checked:
continue
cand = H.edges.members(cand_idx)
if len(he) > len(cand):
if _encapsulated(he, cand):
dag.add_edge(he_idx, cand_idx)
elif len(cand) > len(he):
if _encapsulated(cand, he):
dag.add_edge(cand_idx, he_idx)

# If empirically closest subsets, filter out all edges except those
# between k and maximum existing k'<k
if subset_types == "empirical":
empirical_subsets_filter(H, dag)

return dag

def _encapsulated(larger, smaller):
"""Test if a larger hyperedge encapsulates a smaller hyperedge.
Parameters
----------
larger : Set
larger hyperedge
smaller : Set
smaller hyperedge
Returns
-------
_ : Bool
True if the size of the intersection between larger and smaller is
the same as the size of smaller.
"""
return len(set(larger).intersection(set(smaller))) == len(smaller)

def _get_candidates(subset_types, H, he):
"""Get the candidate hyperedges for encapsulation by he based on the subset type.
Parameters
----------
subset_types : str
Type of subset relationships
H : Hypergraph
The hypergraph
he : Set
The hyperedge
Returns
-------
candidates : Set
A set of hyperedge IDs to check for encapsulation by hyperedge he
"""
candidates = set()
for node in he:
for cand_idx in H.nodes.memberships(node):
if cand_idx not in candidates:
cand = H.edges.members(cand_idx)
if _check_candidate(subset_types, he, cand):
candidates.add(cand_idx)

return candidates

def _check_candidate(subset_types, he, cand):
"""Check whether a hyperedge cand is a candidate to be encapsulated by
hyperedge he based on subset_types.
Parameters
----------
subset_types : str
Type of subset relationships
he : Set
The hyperedge
cand : Set
The candidate
Returns
-------
is_candidate : bool
True if cand is a valid candidate to be encapsulated by he, False
otherwise.
"""
is_candidate = False
if subset_types in ["all", "empirical"]:
if len(he) != len(cand):
is_candidate = True
elif subset_types == "immediate":
if len(he) == len(cand)-1 or len(he)-1 == len(cand):
is_candidate = True
return is_candidate

def empirical_subsets_filter(H, dag):
"""
Filters encapsulation DAG of H in place to only include edges between hyperedges
of size k and the maximum existing k'.
Parameters
----------
H : Hypergraph
The hypergraph of interest
dag : nx.DiGraph
The encapsulation dag of H constructed with to_encapsulation_dag(H, subset_types="all")
Returns
-------
dag : networkx.DiGraph
The filtered line graph (also modified in place)
References
----------
"Encapsulation Structure and Dynamics in Hypergraphs", by Timothy LaRock
& Renaud Lambiotte. https://arxiv.org/abs/2307.04613
"""
# Loop over all edges
for edge_idx in dag:
preds = list(dag.predecessors(edge_idx))
if len(preds) > 0:
# Get the minimum superface size
min_sup_size = min([len(H.edges.members(cand_idx)) for cand_idx in
preds])
# Keep only the superfaces with that size
to_remove = []
for cand_idx in preds:
if len(H.edges.members(cand_idx)) != min_sup_size:
dag.remove_edge(cand_idx, edge_idx)

# Repeat for subsets
outs = list(dag.successors(edge_idx))
if len(outs) > 0:
max_sub_size = max([len(H.edges.members(sub_idx)) for sub_idx in outs])
for cand_idx in outs:
if len(H.edges.members(cand_idx)) != max_sub_size:
dag.remove_edge(edge_idx, cand_idx)
return dag

0 comments on commit 7f93d0e

Please sign in to comment.