Skip to content
/ HGAD Public

[ECCV 2024] The code for the ECCV 2024 paper: Hierarchical Gaussian Mixture Normalizing Flow Modeling for Unified Anomaly Detection

Notifications You must be signed in to change notification settings

xcyao00/HGAD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch implementation for ECCV2024 paper, Hierarchical Gaussian Mixture Normalizing Flows Modeling for Unified Anomaly Detection.


Installation

Install all packages with this command:

$ python3 -m pip install -U -r requirements.txt

Download Datasets

Please download MVTecAD dataset from MVTecAD dataset, BTAD dataset from BTAD dataset, MVTecAD-3D dataset from MVTecAD-3D dataset, and VisA dataset VisA dataset.

Training

  • Run code for training MVTecAD
python main.py --dataset mvtec --seed 0 --gpu 0

Normally, you can obtain the following results:

Category Image/Pixel AUC Category Image/Pixel AUC Category Image/Pixel AUC
Carpet 1.000/0.994 Bottle 1.000/0.986 Pill 0.966/0.988
Grid 0.997/0.991 Cable 0.970/0.959 Screw 0.961/0.993
Leather 1.000/0.996 Capsule 0.988/0.992 Toothbrush 0.911/0.990
Tile 1.000/0.961 Hazelnut 0.998/0.988 Transistor 0.977/0.913
Wood 0.996/0.959 Metal nut 1.000/0.981 Zipper 0.999/0.990
Mean 0.984/0.979
  • Run code for training BTAD
python main.py --dataset btad --seed 0 --gpu 0

Normally, you can obtain the following results:

Category Image/Pixel AUC Category Image/Pixel AUC Category Image/Pixel AUC
01 1.000/0.976 02 0.859/0.973 03 0.987/0.990
Mean 0.949/0.980
  • Run code for training MVTecAD-3D
python main.py --dataset mvtec3d --seed 0 --gpu 0

Normally, you can obtain the following results:

Category Image/Pixel AUC Category Image/Pixel AUC Category Image/Pixel AUC
Bagel 0.977/0.988 Cable gland 0.963/0.995 Carrot 0.889/0.988
Cookie 0.734/0.966 Dowel 0.960/0.992 Foam 0.811/0.917
Peach 0.829/0.994 Potato 0.690/0.950 Rope 0.976/0.992
Tire 0.876/0.986 Mean 0.871/0.977
  • Run code for training VisA
python main.py --dataset visa --seed 0 --gpu 0

Normally, you can obtain the following results:

Category Image/Pixel AUC Category Image/Pixel AUC Category Image/Pixel AUC
Candle 0.988/0.995 Capsules 0.956/0.990 Cashew 0.910/0.991
Chewinggum 0.999/0.996 Fryum 0.984/0.949 Macaroni1 0.991/0.998
Macaroni2 0.926/0.997 Pcb1 0.976/0.995 Pcb2 0.956/0.983
Pcb3 0.986/0.994 Pcb4 0.979/0.987 Pipe fyrum 0.996/0.993
Mean 0.971/0.989
  • Run code for training Union dataset (combined by MVTecAD, BTAD, MVTecAD-3D, and VisA)
python main.py --dataset union --seed 0 --gpu 0

We also report the detailed results on the Union dataset as follows:

Category Image/Pixel AUC Category Image/Pixel AUC Category Image/Pixel AUC
Bottle 1.000/0.982 Cable 0.951/0.860 Capsule 0.934/0.990
Carpet 1.000/0.993 Grid 0.986/0.983 Hazelnut 1.000/0.985
Leather 1.000/0.995 Metal nut 0.997/0.981 Pill 0.969/0.984
Screw 0.812/0.986 Tile 0.999/0.936 Toothbrush 0.961/0.992
Transistor 0.996/0.901 Wood 0.994/0.957 Zipper 0.999/0.992
01 0.997/0.974 02 0.838/0.969 03 0.995/0.997
Bagel 0.983/0.991 Cable gland 0.886/0.990 Carrot 0.815/0.990
Cookie 0.792/0.972 Dowel 0.896/0.978 Foam 0.798/0.913
Peach 0.856/0.993 Potato 0.625/0.958 Rope 0.929/0.994
Tire 0.835/0.965
Candle 0.989/0.996 Capsules 0.939/0.975 Cashew 0.928/0.987
Chewinggum 0.996/0.996 Fryum 0.976/0.938 Macaroni1 0.975/0.997
Macaroni2 0.903/0.995 Pcb1 0.964/0.992 Pcb2 0.966/0.972
Pcb3 0.964/0.990 Pcb4 0.981/0.981 Pipe fyrum 0.991/0.992
Mean 0.935/0.975

Note: You need to set the root directory of your dataset in the main.py by setting args.data_path. For Union dataset, the dataset path can be set in the datasets/union.py script.

Citation

If you find this repository useful, please consider citing our work:

@article{HGAD,
      title={Hierarchical Gaussian Mixture Normalizing Flows Modeling for Unified Anomaly Detection}, 
      author={Xincheng Yao and Ruoqi Li and Zefeng Qian and Lu Wang and Chongyang Zhang},
      year={2024},
      booktitle={European Conference on Computer Vision 2024},
      url={https://arxiv.org/abs/2403.13349},
      primaryClass={cs.CV}
}

If you are interested in our work, you can also follow our other works: BGAD (CVPR2023), PMAD (AAAI2023), FOD (ICCV2023), ResAD (NeurIPS2024). Or, you can follow our github page xcyao00.

About

[ECCV 2024] The code for the ECCV 2024 paper: Hierarchical Gaussian Mixture Normalizing Flow Modeling for Unified Anomaly Detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages