-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
88 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
import torch | ||
import os | ||
import argparse | ||
import random | ||
import yaml | ||
import numpy as np | ||
import hparams as hp | ||
|
||
from data.audio import save_wav, inv_mel_spectrogram | ||
from model.generator import MelGANGenerator | ||
from model.generator import MultiBandHiFiGANGenerator | ||
from model.generator import HiFiGANGenerator | ||
from model.generator import BasisMelGANGenerator | ||
|
||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | ||
|
||
|
||
def publish_model(checkpoint_path, config_path, model_name, save_path): | ||
with open(config_path) as f: | ||
config = yaml.load(f, Loader=yaml.Loader) | ||
print(f"Loading Model of {model_name}...") | ||
if model_name == "melgan": | ||
model = MelGANGenerator(in_channels=config["in_channels"], | ||
out_channels=config["out_channels"], | ||
kernel_size=config["kernel_size"], | ||
channels=config["channels"], | ||
upsample_scales=config["upsample_scales"], | ||
stack_kernel_size=config["stack_kernel_size"], | ||
stacks=config["stacks"], | ||
use_weight_norm=config["use_weight_norm"], | ||
use_causal_conv=config["use_causal_conv"]).to(device) | ||
elif model_name == "hifigan": | ||
model = HiFiGANGenerator(resblock_kernel_sizes=config["resblock_kernel_sizes"], | ||
upsample_rates=config["upsample_rates"], | ||
upsample_initial_channel=config["upsample_initial_channel"], | ||
resblock_type=config["resblock_type"], | ||
upsample_kernel_sizes=config["upsample_kernel_sizes"], | ||
resblock_dilation_sizes=config["resblock_dilation_sizes"], | ||
transposedconv=config["transposedconv"], | ||
bias=config["bias"]).to(device) | ||
elif model_name == "multiband-hifigan": | ||
model = MultiBandHiFiGANGenerator(resblock_kernel_sizes=config["resblock_kernel_sizes"], | ||
upsample_rates=config["upsample_rates"], | ||
upsample_initial_channel=config["upsample_initial_channel"], | ||
resblock_type=config["resblock_type"], | ||
upsample_kernel_sizes=config["upsample_kernel_sizes"], | ||
resblock_dilation_sizes=config["resblock_dilation_sizes"], | ||
transposedconv=config["transposedconv"], | ||
bias=config["bias"]).to(device) | ||
elif model_name == "basis-melgan": | ||
basis_signal_weight = torch.zeros(config["L"], config["out_channels"]).float() | ||
model = BasisMelGANGenerator(basis_signal_weight=basis_signal_weight, | ||
L=config["L"], | ||
in_channels=config["in_channels"], | ||
out_channels=config["out_channels"], | ||
kernel_size=config["kernel_size"], | ||
channels=config["channels"], | ||
upsample_scales=config["upsample_scales"], | ||
stack_kernel_size=config["stack_kernel_size"], | ||
stacks=config["stacks"], | ||
use_weight_norm=config["use_weight_norm"], | ||
use_causal_conv=config["use_causal_conv"], | ||
transposedconv=config["transposedconv"]).to(device) | ||
else: | ||
raise Exception("no model find!") | ||
model.load_state_dict(torch.load(os.path.join(checkpoint_path), map_location=torch.device(device))['model']) | ||
if model_name == "basis-melgan": | ||
with torch.no_grad(): | ||
bias = model.inference(torch.zeros(30000, 80)) # support up to synthesize 300s waveform | ||
pattern = bias.cpu().numpy() | ||
published_dict = { | ||
'model': model.state_dict(), | ||
'pattern': pattern | ||
} | ||
torch.save(published_dict, save_path) | ||
model.eval() | ||
model.remove_weight_norm() | ||
return | ||
|
||
|
||
def run_publisher(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--checkpoint_path', type=str) | ||
parser.add_argument("--model_name", type=str, help="melgan, hifigan and multiband-hifigan.") | ||
parser.add_argument("--config", type=str, help="path to model configuration file") | ||
parser.add_argument("--save_path", type=str, help="path to save published model") | ||
args = parser.parse_args() | ||
publish_model(args.checkpoint_path, args.config, args.model_name, args.save_path) |