Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Test-Adaptations for Dask 2020.12.0-2021.2.0 #39

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 18 additions & 12 deletions examples/optimizer/skopt_example.py
Original file line number Diff line number Diff line change
@@ -1,30 +1,36 @@
from sklearn.datasets import load_boston
from sklearn.model_selection import KFold, ShuffleSplit
from sklearn.datasets import load_diabetes
from sklearn.model_selection import ShuffleSplit

from photonai.base import Hyperpipe, PipelineElement
from photonai.optimization import FloatRange, Categorical

# WE USE THE BOSTON HOUSING DATA FROM SKLEARN
X, y = load_boston(return_X_y=True)
# WE USE THE DIABETES DATA FROM SKLEARN
X, y = load_diabetes(return_X_y=True)

# DESIGN YOUR PIPELINE
my_pipe = Hyperpipe('skopt_example',
optimizer='sk_opt', # which optimizer PHOTONAI shall use, in this case sk_opt
optimizer_params={'n_configurations': 25, 'acq_func': 'LCB', 'acq_func_kwargs': {'kappa': 1.96}},
metrics=['mean_squared_error', 'pearson_correlation'],
best_config_metric='mean_squared_error',
outer_cv=ShuffleSplit(n_splits=4, test_size=0.2),
inner_cv=KFold(n_splits=3),
optimizer_params={'n_configurations': 25,
'n_initial_points': 10,
'base_estimator': 'GP',
'initial_point_generator': 'grid',
'acq_func': 'LCB',
'acq_func_kwargs': {'kappa': 1.96}
},
metrics=['mean_squared_error', 'mean_absolute_error'],
best_config_metric='mean_absolute_error',
outer_cv=ShuffleSplit(n_splits=3, test_size=0.2),
inner_cv=ShuffleSplit(n_splits=3, test_size=0.3),
verbosity=0,
project_folder='./tmp/')

# ADD ELEMENTS TO YOUR PIPELINE
# first normalize all features
# first scale all features
my_pipe += PipelineElement('StandardScaler')

# engage and optimize SVR
# linspace and logspace is converted to uniform and log-uniform priors in skopt
my_pipe += PipelineElement('SVR', hyperparameters={'C': FloatRange(1e-3, 100, range_type='logspace'),
# linspace and logspace are converted to uniform and log-uniform priors in skopt
my_pipe += PipelineElement('SVR', hyperparameters={'C': FloatRange(0.1, 100, range_type='linspace'),
'epsilon': FloatRange(1e-3, 10, range_type='logspace'),
'tol': FloatRange(1e-4, 1e-2, range_type='linspace'),
'kernel': Categorical(['linear', 'rbf', 'poly'])})
Expand Down
14 changes: 7 additions & 7 deletions photonai/optimization/grid_search/grid_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def __init__(self):

def prepare(self, pipeline_elements: list, maximize_metric: bool) -> None:
"""
Creates a grid from a list of PipelineElements.
Create a grid from a list of PipelineElements.
Hyperparameters can be accessed via pipe_element.hyperparameters.

Parameters:
Expand All @@ -54,7 +54,7 @@ def next_config_generator(self) -> Generator:
Generator for new configs - ask method.

Returns:
Yields the next config.
Yield the next config.

"""
for parameters in self.param_grid:
Expand All @@ -64,8 +64,8 @@ def next_config_generator(self) -> Generator:
class RandomGridSearchOptimizer(GridSearchOptimizer):
"""Random grid search optimizer.

Searches for the best configuration by randomly
testing n points of a grid of possible hyperparameters.
Search for the best configuration by randomly
testing n points in a grid of possible hyperparameters.

Example:
``` python
Expand All @@ -85,10 +85,10 @@ def __init__(self, limit_in_minutes: Union[float, None] = None, n_configurations

Parameters:
limit_in_minutes:
Total time in minutes.
Total time limit in minutes.

n_configurations:
Number of configurations to be calculated.
Maximum number of configurations to be calculated.

"""
super(RandomGridSearchOptimizer, self).__init__()
Expand Down Expand Up @@ -126,7 +126,7 @@ def next_config_generator(self) -> Generator:
Generator for new configs - ask method.

Returns:
Yields the next config.
Yield the next config.

"""
if self.start_time is None and self.limit_in_minutes is not None:
Expand Down
8 changes: 4 additions & 4 deletions photonai/optimization/random_search/random_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,10 +20,10 @@ def __init__(self, limit_in_minutes: Union[float, None] = 60, n_configurations:

Parameters:
limit_in_minutes:
Total time in minutes.
Total time limit in minutes.

n_configurations:
Number of configurations to be calculated.
Maximum number of configurations to be calculated.

"""
self.pipeline_elements = None
Expand Down Expand Up @@ -51,7 +51,7 @@ def __init__(self, limit_in_minutes: Union[float, None] = 60, n_configurations:

def prepare(self, pipeline_elements: list, maximize_metric: bool) -> None:
"""
Initializes grid free random hyperparameter search.
Initialize the grid-free random hyperparameter search.

Parameters:
pipeline_elements:
Expand All @@ -70,7 +70,7 @@ def next_config_generator(self) -> Generator:
Generator for new configs - ask method.

Returns:
Yields the next config.
Yield the next config.

"""
while True:
Expand Down
43 changes: 29 additions & 14 deletions photonai/optimization/scikit_optimize/sk_opt.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ class SkOptOptimizer(PhotonSlaveOptimizer):
skopt aims to be accessible and easy to use in many contexts.


Scikit-optimize [usage and implementation details](https://scikit-optimize.github.io/stable/)
Scikit-Optimize's [usage and implementation details](https://scikit-optimize.github.io/stable/)

A detailed parameter documentation [here.](
https://scikit-optimize.github.io/stable/modules/generated/skopt.optimizer.Optimizer.html#skopt.optimizer.Optimizer)
Expand All @@ -43,23 +43,25 @@ def __init__(self,
n_configurations: int = 20,
n_initial_points: int = 10,
limit_in_minutes: Union[float, None] = None,
base_estimator: Union[str, sklearn.base.RegressorMixin] = "ET",
base_estimator: Union[str, sklearn.base.RegressorMixin] = "GP",
initial_point_generator: str = "random",
acq_func: str = 'gp_hedge',
acq_func_kwargs: dict = None):
acq_optimizer: str = 'auto',
acq_func_kwargs: dict = None,
acq_optimizer_kwargs: dict = None):
"""
Initialize the object.

Parameters:
n_configurations:
Number of configurations to be calculated.
Maximum number of configurations to be calculated.

n_initial_points:
Number of evaluations with initialization points
before approximating it with `base_estimator`.

limit_in_minutes:
Total time in minutes.
Total time limit in minutes.

base_estimator:
Estimator for returning std(Y | x) along with E[Y | x].
Expand All @@ -70,17 +72,27 @@ def __init__(self,
acq_func:
Function to minimize over the posterior distribution.

acq_optimizer:
Method to minimize the acquisition function.
The fit model is updated with the optimal value
obtained by optimizing acq_func with acq_optimizer.

acq_func_kwargs:
Additional arguments to be passed to the acquisition function.

acq_optimizer_kwargs:
Additional arguments to be passed to the acquisition optimizer.

"""
self.metric_to_optimize = ''
self.n_configurations = n_configurations
self.n_initial_points = n_initial_points
self.base_estimator = base_estimator
self.initial_point_generator = initial_point_generator
self.acq_func = acq_func
self.acq_optimizer = acq_optimizer
self.acq_func_kwargs = acq_func_kwargs
self.acq_optimizer_kwargs = acq_optimizer_kwargs
self.limit_in_minutes = limit_in_minutes
self.start_time, self.end_time = None, None

Expand All @@ -95,7 +107,7 @@ def ask_generator(self) -> Generator:
Generator for new configs - ask method.

Returns:
Yields the next config.
Yield the next config.

"""
if self.start_time is None and self.limit_in_minutes is not None:
Expand All @@ -116,9 +128,9 @@ def ask_generator(self) -> Generator:

def prepare(self, pipeline_elements: list, maximize_metric: bool) -> None:
"""
Initializes hyperparameter search with scikit-optimize.
Initialize the hyperparameter search with Scikit-Optimize.

Assembles all hyperparameters of the list of PipelineElements
Assemble all hyperparameters of the list of PipelineElements
in order to prepare the hyperparameter space.
Hyperparameters can be accessed via pipe_element.hyperparameters.

Expand Down Expand Up @@ -158,8 +170,9 @@ def prepare(self, pipeline_elements: list, maximize_metric: bool) -> None:
space.append(skopt_param)

if self.constant_dictionary:
msg = "PHOTONAI has detected some one-valued params in your hyperparameters. Pleas use the kwargs for " \
"constant values. This run ignores following settings: " + str(self.constant_dictionary.keys())
msg = "PHOTONAI has detected some one-valued params in your hyperparameters. " \
"Please use the kwargs for constant values. " \
"This run ignores the setting: {}".format(str(self.constant_dictionary.keys()))
logger.warning(msg)
warnings.warn(msg)

Expand All @@ -173,7 +186,9 @@ def prepare(self, pipeline_elements: list, maximize_metric: bool) -> None:
n_initial_points=self.n_initial_points,
initial_point_generator=self.initial_point_generator,
acq_func=self.acq_func,
acq_func_kwargs=self.acq_func_kwargs)
acq_optimizer=self.acq_optimizer,
acq_func_kwargs=self.acq_func_kwargs,
acq_optimizer_kwargs=self.acq_optimizer_kwargs)
self.ask = self.ask_generator()

def tell(self, config: dict, performance: float) -> None:
Expand Down Expand Up @@ -208,14 +223,14 @@ def _convert_photonai_to_skopt_space(self, hyperparam: Union[PhotonHyperparam, l
elif hyperparam.range_type == 'logspace':
return Real(hyperparam.start, hyperparam.stop, name=name, prior='log-uniform')
else:
msg = "The hyperparam.range_type "+hyperparam.range_type+" is not supported by scikit-optimize."
msg = "The hyperparam.range_type {} is not supported by Scikit-Optimize.".format(hyperparam.range_type)
logger.error(msg)
raise ValueError(msg)
elif isinstance(hyperparam, IntegerRange):
return Integer(hyperparam.start, hyperparam.stop, name=name)

msg = "Cannot convert hyperparameter " + str(hyperparam) + ". " \
"Supported types: Categorical, IntegerRange, FloatRange, list."
msg = "Cannot convert hyperparameter {}. Supported types: " \
"Categorical, IntegerRange, FloatRange, list.".format(str(hyperparam))
logger.error(msg)
raise ValueError(msg)

Expand Down
4 changes: 2 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,8 +51,8 @@
'prettytable',
'seaborn',
'joblib',
'dask==2.30.0',
'distributed==2.30.1',
'dask',
'distributed',
'scikit-optimize',
'xlrd']
)
Original file line number Diff line number Diff line change
Expand Up @@ -116,5 +116,5 @@ def test_slave_interface():
@staticmethod
def test_master_interface():
opt = PhotonMasterOptimizer()
opt.prepare(list(), True, None)
opt.prepare(list(), True, lambda x: x)
opt.optimize()
5 changes: 4 additions & 1 deletion test/optimization_tests/nevergrad_tests/test_nevergrad.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,10 @@ def test_other(self):
opt = NevergradOptimizer(facade="NGO", n_configurations=10)
pipeline_elements = [PipelineElement('SVC', hyperparameters={'kernel': ["sigmoid", "rbf"],
'C': [0.6], 'coef0': Categorical([0.5])})]
of = lambda x: x ** 2

def of(x):
return x ** 2

with warnings.catch_warnings(record=True) as w:
opt.prepare(pipeline_elements=pipeline_elements, maximize_metric=True, objective_function=of)
assert any("PHOTONAI has detected some" in s for s in [e.message.args[0] for e in w])
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,7 @@ def setUp(self) -> None:
photonai_ng.__found__ = False

def test_imports(self):
"""
Test for ModuleNotFoundError (requirements.txt).
"""
"""Test for ModuleNotFoundError (requirements.txt)."""
with self.assertRaises(ModuleNotFoundError):
NevergradOptimizer()

Expand Down
2 changes: 1 addition & 1 deletion test/optimization_tests/smac_tests/test_smac.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ def test_further_parameters(self):
pipe.add(PipelineElement('StandardScaler'))
pipe += PipelineElement('PCA', hyperparameters={'n_components': IntegerRange(5, 30)})
pipe += PipelineElement('SVC', hyperparameters={'kernel': Categorical(["rbf", 'poly']),
'C': FloatRange(0.5, 200)}, gamma='auto')
'C': FloatRange(0.5, 200)}, gamma='auto')
X, y = self.simple_classification()
pipe.fit(X, y)
self.assertEqual(len(pipe.results.outer_folds[0].tested_config_list), n_configurations)
Expand Down
Loading